DIAGNOSTICS AND TREATMENT OF DIOCTOPHYMOSIS IN DOGS

Abstract. This article includes materials on the rare disease in domestic and wild carnivores, dioctophyminosis, caused by a helminth from the group of asphramidia nematodes, Dioctophyme renale, which is parasitic in the kidneys, recently registered in veterinary clinics in Almaty. The disease has important social significance - a person is susceptible to it, the infection of which occurs when raw fish is eaten. In Almaty, according to the statistics of veterinary clinics in recent years (2018-2019), 17 cases of dioctophyminosis in dogs have been registered, that is up to 0.3% of the number of dogs examined for helminthiasis. The appearance of this disease, which is relatively new for our region, can have a significant impact on the epizootiological and epidemiological situation. The results of in vivo laboratory diagnosis of dioctophyminosis in dogs by ovoidoscopic methods are presented, with the provision of microphotos of the parasite eggs; methods of instrumental diagnostics - ultrasound examination (ultrasound) of the kidneys with the provision of photos proving the presence of a parasite in the renal pelvis. Since the only treatment for dioctophyminosis is surgery and extraction of dioctophyma from the affected organ (kidney), our own original materials are presented for a step by step surgical intervention to extract helminth from the kidneys of dogs and treat animals. The condition of the operated animals is satisfactory, the prognosis for surgery is favorable.

Keywords: dogs, carnivores, helminths, helminthiasis, monitoring, nematodes, epizootiological and epidemiological situation, hematuria, dioctophyminosis, ultrasound, OIE, WHO, invasive material, urine, feces, kidneys, surgical treatment.

Relevance of research. Dioctophyminosis (code according to ICD-10 - B83.9) is a helminthiasis disease of silver-black foxes, dogs, jackals, marten and other carnivores, as well as humans when eating raw fish. The disease is characterized by damage to the kidneys, renal pelvis, ureters, bladder, abdominal cavity, sometimes the liver, blood vessels and heart; manifested by intoxication of the body, uremic phenomena, bloody urine. The literature describes cases of human infection with dioctophyma and rarely cattle. The disease relates to the group of helminthiasis caused by asphramidia nematodes [1, 2].

The systematic position of the dioctophyminosis pathogen [1]:
Class -
Subclass -
Order -
Suborder -
Superfamily -
Family -
Genus -
Specie -

The Dioctophyme renale pathogen, is a nematode referring to the Dioctophymidae family, the only specie of the Dioctophyme. D. renale genus, represents sexual dimorphism and is considered the largest nematode, which infects the domestic animals, males can reach a length of 40 cm, and females can reach up to 100 cm [3]. The female has the rounded tail end, its vulva opens at the level of the initial part of the esophagus. The male has the tail end, which ends with a bell-shaped bursa, from which a spicule protrudes. The papillary tubercles in the form of two circles are around the mouth of the helminth [2].
Reproduction occurs by discharging eggs of 0.077 - 0.083x0.046 - 0.047 mm, brown, with lids at the poles. The egg shell consists of three layers: the outer, inner and vitelline membrane. The surface of the egg is dotted with small impressions like pockets. Eggs are secreted into the environment with the urine of a sick animal [2].

Dioctophyma are biohelminths. The pathogen development takes place with the participation of two hosts: definitive and intermediate hosts.

Definitive hosts: The main definitive hosts are crmnes and canids. However, this nematode has been reported in pigs, cats, horses, cattle and other mammals such as wild cat, cheetah, coati, focial densification, mongoose rat [4]; and about 24 cases have been reported in humans [5], therefore, it is considered a zoonotic disease.

Intermediate hosts: Branchiobdella or Lumbriculus oligochaetes.

Additional and reservoir hosts: fish (sabrefish, perch, barbel, mackerel, spike, shovel, pike, catfish, gambusia and some other cyprinids), in the body of which helminth larvae are encapsulated, remaining viable for a long time [2].

Sexually mature females, localized in a sick animal in the renal pelvis, ureters, and bladder, lay eggs, which are excreted with the urine into the external environment. Eggs, which fall into the water, are developed within 25 to 30 days. They form larvae, which reach 0.28 - 0.31 mm in length.

The eggs with developed larvae are swallowed together with detritus by the first intermediate hosts - oligochaetes of the Branchiobdella or Lumbriculus genus. In the intestine of the oligochaetes, larva emerges from the egg and migrates into the abdominal blood vessel, where it grows and develops. After 45-60 days, depending on the water temperature, the first molt occurs and the larva turns into the second stage, reaching 0.885-1.181 mm in length. After 3.5 - 4 months the larva molts for a second time and turns into a third-stage larva, reaching 6.905 - 8.018 mm in length. At this stage of larval development, young males and females are formed.

Oligochaetes infected by invasive larvae are eaten by fish, the second intermediate hosts (sicklefish, perch, barbel, shemaya, ship, shovelnose sturgeon, pike, catfish, gambusia and some other cyprinids) [2].

The further development of the third stage larva occurs only in the organism of the definitive host, where it can enter together with the oligochaetes or with infected fish. Larvae of dioctofimide, once entered in the intestines of the final host (carnivores or humans), penetrate its wall, enter the body cavity and migrate through the body, reaching the renal pelvis. At this time, the larvae molt twice. The life cycle of dioctofimide is completed in 8.5 - 9 months.

The lifespan of a nematode in the organism of a definitive host is up to 3–5 years [2].

Epizootological data. Locally, dioctophimosis of carnivores is found in areas of Transcaucasia, Central Asia, Kazakhstan, the Far East, Karelia and Siberia in large river basins. Dioctophimosis is registered in far abroad countries: Italy, Austria, Germany, Holland, France, England, Japan, North and South America [2]. For example, infection of dogs in some areas of North America reaches up to 37%, in Kazakhstan it ranges from 1 to 9% [6]. This parasite has a worldwide distribution, however, most reports have been received from South-East Asia [7,8].

Epidemiology. Human dioctophimosis is registered in many countries of the world: Argentina, Paraguay, Brazil, the USA, a number of European countries, Iran, South Vietnam, China, Japan. In the CIS countries, it is more often found in Tajikistan, Uzbekistan, Kazakhstan, isolated cases are registered in Leningrad and Arkhangelsk regions. Since annelids (intermediate hosts of Dioctophyme renale) live on the wet coasts of water bodies, endemic foci are confined to river valleys and lakes [6].

Symptoms and pathogenesis. Mostly sexually mature helminths are localized in animals in the kidneys and less often in the abdominal cavity. But, before getting there, nematodes migrate from the stomach of a mammal, where they get with fish or oligochaetes. They invade the muscle layer of the stomach wall, causing a hematoma. Then they migrate to the body cavity and are closer to the liver. Penetrate into its parenchyma, and then into the renal pelvis. As a result, its wall is greatly stretched and thinned, the kidney atrophies. Sometimes the nematode enters the urethra. All this leads to significant violations of these organs and painful phenomena of the whole organism. An animal or a human does not have appetite, vomiting, general exhaustion, and an oppressed state appear. A muddy, bloody liquid accumulates inside the renal pelvis, its smell resembles that of urine. The mucous membrane of the renal
pelvis becomes grayish-white or yellowish in color. In places of degenerated areas, the lime salt are deposited in the form of multiple lumps [2,6].

Pathological changes in the human body at the onset of the disease are associated with the migration of larvae into the abdominal cavity and into the liver, which is accompanied by hemorrhages, serous-fibrinous inflammation of the mesentery, venous congestion in the liver, and the formation of granulomas and scars at the sites of damage. During parasitization of adult helminths in the human renal pelvis, the kidney parenchyma is destroyed step by step, and the capsule is preserved only. The right cavity, directly adjacent to the duodenum, from which the parasite larvae migrate, is more often affected [6, 9].

The most characteristic symptoms of the disease are renal colic, pyuria, hematuria, oliguria and anuria. Often there are complaints of pain in the lumbar region, which spread throughout the abdomen.

Complications in humans are renal coma [6,10].

In fish, Dioctophyme renale larvae reach 6.9 - 8.2 mm in length and 0.19 - 0.2 mm in width. They are localized in the internal organs: in the intestinal wall, on the peritoneum, mesentery, in the gonads, a connective tissue capsule is formed around them.

Diagnosis. To make a diagnosis during life, urine is examined for the parasite eggs and an ultrasound examination of the kidneys (ultrasound) is performed. Posthumously, disease is diagnosed on the basis of an autopsy of animals and finding a nematode in the kidney, less commonly in other organs [2].

When examining the fish, encapsulated larvae are found in the intestine, mesentery, and gonads [2].

Treatment. The only treatment at this time is surgery and extraction of Dioctophyme renale from the affected organ. There is evidence of attempts to treat animals with ivomek, praziquantel, levomizole, etc. [2, 6, 11].

Prevention of the disease is to identify dysfunctional water bodies and prohibit to feed the animals with raw fish. In areas unfavorable due to dioctophimosis, dogs are not allowed to sites of catching and cutting fish. The diet of fur-bearing animals excludes the raw fresh fish caught in reservoirs unsuccessful due to this invasion. They explanatory work is conducted among fisheries workers and among the population on the prevention of dioctophimosis [12,13,14,15,16].

The epidemiological and epidemiological situation with many helminthiasis of carnivores, especially in zoonotic helminthiasis in Kazakhstan and in neighboring countries, should be improved. In the world, especially in tropical and subtropical countries, the epidemiological and epidemiological situation regarding zoonotic helminthiasis is very problematic. For example, according to the classification of the Office International des Epizooties (OIE), some helminthiasis, in particular echinococcosis, which is spread among population and productive animals by the carnivorous, are included in the list of the most common diseases and in many countries are included in national programs to eliminate the disease. The annual costs for treating patients and losses in animal husbandry are amounted to USD 3 bln. Kazakhstan is among the regions permanently unfavorable for echinococcosis. World experience shows that establishing the incidence of helminth infections in animals allows us to assess the degree of threat to humans. According to the World Health Organization (WHO), every year a quarter of the population (more than 1.4 billion people) is infected with parasites, the most significant group of which is helminths. Nematodoses are the most common of the helminthiasis [17].

Kazakhstan also has a difficult epidemiological and epidemiological situation regarding zoonotic helminthiasis. From the State report on the situation in Kazakhstan, it follows that the epidemiological situation with parasitosis in the country poses a threat to public health. About 20,000 cases of parasitosis are recorded annually in Kazakhstan, the intensive incidence rate is on average about 24.2 per 100 thousand people. A number of researchers (Kereyev Ya.M., 2010; Shalmenov M.Sh., 2005; Akshulakov S.K., 2002; Amireyev S.A., 2002; Shabdarbeyeva G.S., Abdiekova A.M., Shapiyeva Zh.Zh., 2012; Lider L.A., 2009; Shabdarbeyeva G.S. et al., 2016) note a large infection of carnivores and humans with zoonotic helminthiasis [18-23].

In Kazakhstan, a number of scientists performed researches related to monitoring of helminthiasis of carnivorous zoonotic helminthiasis. 11 species of helminths from different systematic groups were registered in the studied carnivorous. From the class of trematodes, only 1 species was noted - Opistorhiasis felineus; from the cestode class 4 species: Multiceps multiceps, Diplidium caninum, Echinococcus granulosus, Alveococcus multilocularis; from the class of nematodes of 6 species: Dioctophyme renale, Toxocara canis, Toxascaris leonina, Ancylostoma caninum, Trichocephalus vulpis, Dirofilaria immitis.
The greatest invasion in carnivores was noted by various nematodes, in particular, the species *Toxascaris leonina* that amounted to 28.9% of the total number of infected animals. A rather high infection was observed in carnivorous with toxocariasis: 22.4%. Significant invasion was also noted by the species from the cestodes *Dipylidium caninum*, which is 13.8%. All the above types of helminths are dangerous in human infection and can cause significant damage to his health. The remaining helminths, including diocotphimosis (*Dioctophyme renale*) are presented in isolated cases - from 0.7% to 5.8%. The average helminth infection in the studied dogs was 79.6% [24]. Based on the monitoring results, recommendations were suggested on the control of zoonotic helminthiases and on methods for detecting larval stages of helminths in fish [25, 26].

In connection with the increase in the number of livestock, the types of their diseases are also increasing today. Since invasive diseases occur in all types of domestic animals, they cause enormous damage to the national economy. Many invasive diseases, in particular parasitic diseases lead to mass death of animals [27].

Results. The studies were carried out in Almaty clinics. 17 cases of a rare helminthiasis nematode disease - diocotphimosis in dogs were registered during 2018-2019.

During the anamnesis, the nature of nutrition of the dogs was ascertained whether the animals were fed with raw fish or not. If so, where was the fish come or purchased from?

Clinical examination was carried out using methods of animal thermometry, focusing on the nature of urination: difficult or not; urination frequency; pain during urination; color and texture of urine.

Then, several portions of urine were obtained from dogs, and urine was centrifuged at 1000 rpm within 1 minute. The supernatant was carefully drained, the suspension remaining at the bottom of the centrifuge tube was pipetted by portions on a glass slide and viewed under a microscope at 10 × 40 magnification. Characteristic Dioctophyme renale eggs were found (figure 1). The preliminary clinical diagnosis in all cases was confirmed by intravital urine examination.

During ultrasound examination of the kidneys (ultrasound) contours of 1 or 2 helminths were found in the renal pelvis in dogs. The phenomena of kidney atrophy from squeezing of tissues by a parasite and coagulated helminth in the renal pelvis were observed (figures 2–4).

Having established a positive diagnosis and location of helminths, surgical treatment of dioctophimosis was performed. The progress of operation to extract Dioctophyme renale from the kidney is shown in figures 5–16.

At first, the type of anesthesia for the animal was determined. The need and dosage of anesthesia were calculated and given according to the weight of the animal. Next, the access points to the kidney were determined, the incision site was planned, the incision site was treated with aseptic antimicrobial agents, and the abdominal wall was incised. Then, reaching the kidney, suction of fluid collected around the kidney as a result of the inflammatory process was performed.

![Figure 1 – Dioctophyme renale eggs at 10x40](image1.png)
![Figure 2 – Dog’s kidney ultrasound Results](image2.png)
A small incision was made in the kidney wall, the forceps were carefully inserted into the incision, the helminth was fixed, and removed carefully through the incision using the twisting method (figures 5–9). The extracted helminths were identified by genus and species, measured, museum preparations were prepared from them, which replenished the parasitological museum of the department.

The condition of the patients after the surgery was satisfactory in all cases, there was no temperature reaction, the food was taken with pleasure, the wound healed by primary intention. Urination is not difficult, the kidneys regained their function.

Conclusion. Taking into account the geographical location of Almaty, the lack of large rivers around the metropolis with the species composition of fish, it becomes clear why there is a very small infection of carnivorous with dicrocoeliosis. Cases of infection of the dog with dicrocoeliosis in our clinical practice are apparently imported cases. But infection of carnivores and humans from invasive fish imported from regions unsuccessful for this disease is not excluded.

A. И. Балгынбаева, Г. С. Шабдарбаева, Л. О. Жанкелев, А. С. Ибажанова, Д. М. Хусаинов

Қазақ ұлттық аграрлық университеті, Алматы, Қазақстан

ІТЕРДЕІ ДІОКТОФИМОЗЫН БАЛАУ ЖӘНЕ ЕМДЕУ

Аннотация. Макролада сонғы уақытта Алматы қаласының ветеринариялық клиникаларында тіркелген, уй және жабайы әстрокеті жануарлардың сирек кездесетін ауруы – діоктофимоз, бүйіркетде паразиттелетін афазмидиялық нематод тобының ғельминті тудыраңың Dicrocoelium renale бойына материалдар ұсынылған. Аурулар мағында әлеуеттік мәні бар - алдыңғы оңай сәзмілді, әрекеті шыққа байланыс жасалған, әрекеті қызмет көрсетеді. Актының әрекетінің үлесін түсіндіреді.

**Интерді діоктофимозды тірі кезіндегі зертхана жұмысының нәтижелері, паразит ұрмұртқаларының микрофотографиясы ұсынылып, оқығанда реттеу, түзілген қарсы әсер мақсатында кеңестік салыстыру, операциялық әрекеттік араласу бойынша қосымді бірнеше мәліметтерді көрсету.
А. И. Балгимбаева, Г. С. Шабдарбаева,
Л. О. Жантелиева, А. С. Ибазанова, Д. М. Хусаннов

Казахский национальный аграрный университет, Алматы, Казахстан

ДИАГНОСТИКА И ЛЕЧЕНИЕ ДИОКТОФИМОЗА СОБАК

Аннотация. В статье представлены материалы по зарегистрированным в последние годы в ветеринарных клиниках г. Алматы редким заболеваниям домашних и диких плотоядных – диоктофимозе, вызываемом гельминтом из группы афразмиевых нематод - Diplostomum renae, паразитирующего в почках. Заболевание имеет важное социальное значение – к нему восприимчив человек, заражение которого происходит при употреблении в пищу сырой рыбы. В условиях г. Алматы по статистическим данным ветеринарных клиник за последние годы (2018-2019 гг.) зарегистрировано 17 случаев диоктофимоза у собак, что составляет до 0,3% от числа исследованных по поводу гельминтозов. Появление данного, относительно нового для нашего региона заболевания, может оказать значительное влияние на эпизоотолого-эпидемиологическую обстановку. Представлены результаты прикладной лабораторной диагностики диоктофимоза у собак овскохническими методами, с предоставлением микротестов иск паразита; методами инструментальной диагностики – ультразвуковым исследованием (УЗИ) почек с предоставлением фотографий, доказывающих наличие паразита в лохае почки. Так как единственным методом лечения диоктофимоза является хирургическое вмешательство и извлечение диоктофим из пораженного органа (почки), приведены собственные оригинальные материалы по поэтапному оперативному вмешательству с целью извлечения гельминта из почек собак и лечения животных. Состояние прооперированных животных удовлетворительное, прогноз при проведении оперативного вмешательства благоприятный.

Ключевые слова: собаки, плотоядные, гельминты, гельминтозы, мониторинг, нематоды, эпизоотолого-эпидемиологическая обстановка, гематурия, диоктофимоз, УЗИ, МЭБ, ВОЗ, инвазированный материал, моча, фекалии, почки, оперативное лечение.

Information about authors:
Balgimbayeva A., Kazakh National Agrarian University, Almaty, Kazakhstan; https://orcid.org/0000-0002-4187-6733
Shabdarbaeva G., Kazakh National Agrarian University, Almaty, Kazakhstan; shgs52@mail.ru; https://orcid.org/0000-0001-5708-5162
Zhanzelyeva Laura, Kazakh National Agrarian University, Almaty, Kazakhstan; laura.zhanzelyeva@kaznau.kz; https://orcid.org/0000-0002-7564-2089
Ibažanova A., Kazakh National Agrarian University, Almaty, Kazakhstan; sema.serkova@mail.ru; https://orcid.org/0000-0002-2833-1413
Khussainov Damir, Kazakh National Agrarian University, Almaty, Kazakhstan; doctor-vet@mail.ru; https://orcid.org/0000-0002-0244-8381

REFERENCES