ASSESSMENT OF GRAZING TECHNOLOGY IMPACT ON SOIL INDICATORS

Abstract. In the territories of semi-desert zone of West Kazakhstan region, pastures occupy about 80% of the area. They are an initial base and material basis of sheep farming, main direction of agriculture. However, the increased grazing load in recent years has changed natural balance and, due to the increased vulnerability of semiarid and arid ecosystems, contributes to their degradation and desertification. All this could not but affect the condition of semi-desert pastures. These processes threaten well-being of livestock production and destabilize habitat of population, and anxious trends require in-depth analysis of the condition of semi-desert pastures, identification of the causes of their degradation and the development of effective management measures taking into account the characteristics of main types of pasture ecosystems. The research aim is agrochemical assessment of grazing land cover depending on grazing technology. As a result of the studies carried out, the negative impact of intensive grazing of farm animals on physical and chemical indicators of pastures of light chestnut soils has been found. Under the influence of excessive grazing, the stock of humus of light chestnut soils decreased by 27.78%, soil compacted by 13.11%, the content of exchange sodium increased as part of exchange bases and unsalinated soils became a medium degree of saline. The monitoring established degradation of soil of intensive grazing pastures to degree 2 in terms of humus stock and to degree 3 in terms of density, and structural composition of soil was rated as "satisfactory".

Key words: pastures, soil cover, monitoring, degradation, grazing.

Introduction. Global population growth (the Earth's population will be around 9.2 billion in 2050), global climate change and its adverse effects impact on agriculture, the exhaustion of natural resources which is of great importance for the development of the world agriculture safety of foodstuff and safety and new ethical requirements for the producers all this are future problems, connected with sustainable management of natural resources and investments into production of food and agriculture [1, 2].

Grassland, which is a major part of the global ecosystem occupies 37% of the Earth's terrestrial area, contributes significantly to food security, providing much of energy and proteins ruminant animals need to produce meat and dairy products. It is believed that good management of pastures and improvement of degraded pastures can play a fundamental role in mitigating greenhouse gas emissions, especially in carbon storage and absorption [3, 4].

As everywhere else, the problems of combating the degradation of grazing lands and rational use of grazing ecosystems are also relevant for West Kazakhstan. At present, in the semi-desert zone of West Kazakhstan region, the area of grassless and overgrown with unseemly and poisonous pasture plants is growing. The area of degraded land in places of waterfall and recreation of animals is particularly large. Grazing failure around the villages expanded to 7-9 km. In general, dynamics of these processes currently allow to predict with a high degree of confidence the expansion of pastures degradation to 50% of its area.

Unfavourable condition of pastures is not only due to natural characteristics of the region. This is even more the result of anthropogenic influence. Thus, in recent years, in pursuit of profit, agricultural formations, especially farms without taking into account the conditions of grazing lands, have begun to increase the number of farm animals intensively.
As a result, this led to a significant increase in grazing load, reduced yield and fodder intensity of grazing lands, and increased desertification in huge areas. Particularly dysfunctional is the condition of sand pastures used before, mainly as winter ones, today they are used in other seasons as well [5, 6].

In order to prevent adverse anthropogenic impacts on pastures in modern agricultural agriculture, an adaptive strategy to further increase of food production and agricultural raw materials should be based on the principles of environmental management, which includes a number of activities, of which the most important are: seasonality of pasture release taking into account the state of vegetation cover, its yield; determination of optimal livestock load per unit area [7, 8].

Thus, the main issues of environmentally sustainable grazing are the size of seizure and frequency of pasturing. 65-75 year plant growth can be seized without compromising resumption processes. The exclusion of annual growth at this level forms natural favourable conditions for vegetative and seed renewal of plants, creates prerequisites for annual reproduction of plant mass and eliminates possibility of disruption of environmental ties in the plant community and therefore ensures sustainability of the whole grazing ecosystem [9, 10].

Research methods. The research is carried out in Zhangir Khan WKATU within the framework of the program-targeted financing of the Ministry of Agriculture of Kazakhstan on the topic BR 06249365 "Creation of highly productive grazing lands in the conditions of North and West Kazakhstan and their rational use" and on the topic of PhD thesis "Agrochemical assessment of changes in land cover indicators of pastures of West Kazakhstan region depending on grazing technology" in the territories of "Miras" farm in Saralzhinsky rural district of Bokeyurdinsky area.

Options: Intensive grazing (100% browsing of annual growth of grazing plants - control); Moderate grazing (65-75% browsing of annual growth of grazing plants).

The following indicators were defined in soil samples:

- humus (by Turin in CINAO modification (SS 26213-91)) [11];
- P₂O₅ connections (by I. Machigin in CINAO modification, SS 26205-91) [12];
- absorbed bases - by SS 26950-86 [13];
- soil density - (method of cutting cylinder by Kachinsky) [14].

The assessment of structural condition of chestnut soils of grazing lands was carried out according to the main indicators of aggregate analysis: by the content of agronomically valuable units in dry screening, estimated according to the criteria proposed by Dolgov and Bakhtin and by structural coefficient [15].

Statistical processing of the study results was carried out by the method of dispersion analysis, using the program Statistica 6.0. [16]. Pasture coordinates: virgin soil plot N49°05.851', E049°08.101'; moderate grazing pastures N49°08.130', E048°42.751', weak grazing pastures N49°09.494', E048°42.452', intensive grazing pastures N49°08.614', E048°41.017'.

The soil cover of the third zone is light chestnut soils. Almost all light chestnut soils of this zone have clear signs of salt content, which is due to close location to the surface of water-soluble salts. Light chestnut soils are characterized by low natural fertility. Humus content varies between 1.3-1.6% with humus horizon power (A+B₁) 35-45 cm. Light chestnut soils are poor in terms of mobile forms of nutrients as well.

Results and discussion. It is known that the increase in browsing intensity has negative impact on soil properties. The soils of degraded pastures are characterized by increased density and slightly reduced structure. Our studies in 2019 showed that the dynamics of soil properties differ depending on browsing intensity of grazing phytocenoses.

The most integrated indicators of soil condition are content of humus, density and structural composition. Therefore, content of humus, density and structural composition of soil were taken by us as indicators. [17-20].

Changes in soil density, structural composition, humus, mobile phosphorus and exchange sodium content have been studied in the pastures with different browsing technologies. The reserves of soil organic matter are determined by 3 main factors: amount of plant matter entering the soil, rate of mineralization of plant residues and grain-size loss of soils. Carbon input into soil with plant residues is due to net primary production [21].

According to the studies, humus content in light chestnut soils of semi-desert zone also depends on browsing technology of grazing phytocenoses.
In the studied pastures of "Miras" farm in semi-desert zone of West Kazakhstan region there was also a close dependence of plant biomass reserves on physical properties of experimental sites soils.

On the territories of "Miras" farm, the lowest content of humus was determined on the pasture with intensive grazing regime. At humus contents of 0.83%, humus stock in 0-30 cm layer is 34.36 t/ha. Compared to the reference area of no grazing, the reduction of humus stock is at 27.78%. Soil of this site according to the adopted standards belongs to Degree 2 of degradation according to humus reserves.

With the use of 65-75% grazing technology by agricultural farm animals, the humus content on the horizon of 0-30 cm light chestnut soils was 1.15%, with humus reserve of 44.16 t/ha. At this site, the decrease of humus reserve in the layer 0-30 cm of light chestnut soils was 7.18%, i.e. the soil according to humus reserves is not degraded.

Changes in humus stocks also occur by linear function on all soil types. Regression analysis has shown that the greatest rate of decline in humus stocks is determined by soil type and has a linear tendency. The most intense decrease of humus in soil with increased intensity of pasture use is observed on light chestnut soils of 3 semi-desert zone.

Soil density also depended on grazing technology. If at the reference site in the soil layer 0-30 cm the density was 1.22 g/cm³, then at a slight load on the pasture with application of moderate grazing technology the soil density is compacted by 4.91% to 1.28 g/cm³.

Excessive grazing showed strong soil compaction up to 1.38 g/cm³, i.e. with intense grazing soil density increased by 13.11% compared to the density of virgin soil or the soil degraded to Degree 3 as a result of overgrazing.

Regression analysis data have determined the dependence of soil density on humus stock. In the layer 0-30 cm of light chestnut soils with increased load when using intensive technology of grazing livestock stock of humus content. The dependence of light chestnut soil density on humus stock was at $r^2 = 0.9591$ (figure).

![Dependence of soil density on humus content](chart)

- Intensive grazing
- Moderate grazing
- Weak grazing
- Absence of grazing

Humus content, %: Soil density, g/cm³: $r = -0.9999$, $p = 0.0017$

The change in the structural composition of land cover of pastures was also dependent on browsing intensity.

From the data of studies it can be seen that in the soil layer 0-30 cm the content of valuable structural aggregates in the soil on areas of pasture with different browsing technologies varies within 53.06-64.91% with structural coefficient 1.24-1.88. At the same time, the condition of moderate grazing soil by the
composition of agronomically valuable structural aggregates (64.91%) is "good," by the gradation of structural factor assessment is also "good" 1.88.

On the contrary, when the load is increased, the state of aggregate composition (53.06%) and structural factor (1.24) is deteriorated to the rating "satisfactory" (table).

Agrochemical and agrophysical indices of light-chestnut soils of semi-desert zone of WKO depending on grazing technology in layer 0-30 cm, 2019

<table>
<thead>
<tr>
<th>Indices</th>
<th>Reference area of no grazing (control)</th>
<th>Grazing technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moderate grazing (65-75% browsing)</td>
</tr>
<tr>
<td>Humus, %</td>
<td>1.30</td>
<td>1.15</td>
</tr>
<tr>
<td>Humus stock, t/ha</td>
<td>47.58</td>
<td>44.16</td>
</tr>
<tr>
<td>Reduction of humus stock, % (degree of degradation)</td>
<td>-</td>
<td>-7.18 (0)</td>
</tr>
<tr>
<td>Mobile phosphorus, mg/100g</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Amount of exchange bases, mg.eq/100g</td>
<td>14.52</td>
<td>15.40</td>
</tr>
<tr>
<td>Exchange sodium, mg.eq/100g</td>
<td>1.30</td>
<td>1.50</td>
</tr>
<tr>
<td>Content of exchange sodium of exchange bases sum, %</td>
<td>8.95</td>
<td>9.74</td>
</tr>
<tr>
<td>Degree of salt content</td>
<td>Weak solonetzic</td>
<td>Weak solonetzic</td>
</tr>
<tr>
<td>Density, g/cm³</td>
<td>1.22</td>
<td>1.28</td>
</tr>
<tr>
<td>Density increase, % (degree of degradation)</td>
<td>-</td>
<td>+4.91 (0)</td>
</tr>
<tr>
<td>Content of agronomically valuable structural aggregates, %</td>
<td>75.03</td>
<td>64.91</td>
</tr>
<tr>
<td>Grade rating</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Structural factor</td>
<td>3.14</td>
<td>1.88</td>
</tr>
<tr>
<td>Grade rating</td>
<td>Excellent</td>
<td>Good</td>
</tr>
</tbody>
</table>

Non-systemic grazing through deterioration of agrophysical indices and humus quality has a reducing effect on the content of mobile phosphorus as well. Thus, in the soil layer 0-30 cm at the specified technology on light chestnut soils, the content of mobile phosphorus in comparison with the soil of the reference site decreased by 39.04% or to 0.64 mg/100 g.

Deterioration of physical and chemical properties in turn led to an increase in the content of exchanged sodium in soil, which is an indicator of salinity and increase in the process of soils salinity.

If in the soil layer 0-30 cm of pastures with 65-75% browsing, the content of exchange sodium was 1.50 mg.eq/100g, then with the change of pasture mode in the strand increasing the release of phytocenes to 100%, the content of exchange sodium increases to 1.65 mg.eq/100g.

At exchange base capacity of 15.65 mg eq/100g, the specific weight of exchange sodium in the cation exchange capacity (CEC) is 10.54%.

As a result of excessive grazing, the soil in terms of the content of exchange sodium changes from low-salt to middle-salt.

Conclusion. Increasing the load on the pastures of semi-desert zone by means of unsystem grazing has a negative impact on physical and chemical indicators of light chestnut soils. The soil of grazing lands in case of excessive grazing is degraded and negative physical and chemical processes are occurring in the soil cover enhancing the process of salinity.
МАЛ ЖАУО ТЕХНОЛОГИЯЛАРЫНЫҢ ТОПЫРАҚ КОРСЕТЕКШІШТЕРИНЕ ЕСЕРІН БАҒАЛАУ

Аннотация. БҚО жарықтыл шелейт аймагының аумағында жайылуындар барлық ауыл шаруашылығы тандаңының 80% құрылы. Олар ауыл шаруашылығының негізгі бағыты болып саналатын қой шаруа- шылығының бастаны негізі же материалдық негізі. Алайда, сондық жылдырда күшейген жайылуынды жұқтеме табиғи тәсілдік езгеріс және жарықтыл құрылған шелейт және олардың құрулығын жоқ жасауға құмөмдет. Бұл процесс мәл шаруашылығының әл-әкімді қауіп пен қоршаудағы және қалдықтың құралдадық әр түрлі құрылығын, алғашқы тұлғағын тәуемділік және шелейтің құрылығын жайылуынды жай-құйын терен таңдау, олардың төмен сәбісінен анықтауды қажет етеді. Сіз бол шеңбер тұрғысы және әр тәуелсіз, құрал болысы мәселелерінің негізі гүлдерінің, сапатмаларының сәбісге әсер етіп, тимді пайдалану бойынша құрылығын шаралық жасау қажет стеди.

Зерттеу максаты - жайылуы технологиясына байланысты жайылуындарын топырақ жамылығының арғы- химиялық бағалау болып табылады. Зерттеу нәтижесінде ауыл шаруашылық жаңа болысуы көркемді жайы- лым технологиясы жайылуында акылы алысты алуындағы көркемді топыракты жайылуындарының физикалық-химиялық көркемдіштіріне тәсіл есере анықтайды. Жайылуының есериңі анық топырактардың гумус қоры 27,78% - гә төмендеді, топырақ 13,11%-ға ұшымдыды, алнау негіздеріндей алмастығы натрий желілері қоғарылып, қалқыс өмір топырактар орналасқан топырактарға айырды. Мониторинг көркемді жайылы- мының топырақтарының каршықтығы көздері боюнша 2 дәрежеде дейін өзгеру ұшымды жайылуы боюн- ша 3 дәрежеде дейін құйылғанды анықтады, топырақтың крилымдық құрылым қанағаттануын қызмет етіп, болды.

Түннің сөзі: Жайылуындар, топырақ жамылығы, мониторинг, құйылу, малау.
REFERENCES

