THE GEANT4 SIMULATION
OF AN ELECTRON-PHOTON AVALANCHE DEVELOPMENT
IN THUNDERCLOUD ATMOSPHERE

Abstract. On the basis of Geant4 toolkit we created a special program for simulation of the electron-photon avalanche development in a large-size atmospheric electrical field under typical environmental conditions of the Tien Shan mountain cosmic ray station. This code is especially aimed at planning and analysis of experimental results obtained in the frames of thunderstorm investigation program Groza.

The main simulation predictions concerning the electromagnetic components of avalanche: relative abundance of the electron and gamma ray components (30:1), their energy spectra (approximately, a power law shape with differential index -1.5-2 in the range of 30-10000 keV), and the anisotropy of their angular distributions occur in a good agreement with the results of theoretical and experimental studies which have been made so far under mountain conditions. The predicted value of the gamma ray ox which is of the order of 10^2 cm^-2 at observation level also correspond reasonably well to direct measurements made at Tien Shan station. These agreements confirm the adequacy of the used simulation model to real thunderstorm events.

At the same time, the predicted ox of avalanche neutrons seems to be an order of magnitude underestimated in comparison with data of corresponding experimental measurements; such a rough discrepancy can be an evidence of the existence of some effective mechanism of neutron generation in natural atmospheric discharges, besides the fully electromagnetic photo-nuclear and electron-nuclear interactions which have been applied in simulation. We discuss the requirements to design of experimental set – ups appropriate for study of thunderstorm connected radiations at mountain height which follow from presented simulation.

Keywords: thunderstorm, lightning, atmospheric electricity, runaway breakdown, Geant4.

Introduction. An investigation of the processes of atmospheric electric discharge in thunderclouds (lightnings), and of the role of cosmic rays in discharge initiation is held at the Tien Shan mountain cosmic ray station during two last decades. The complex experimental installation Groza (i.e. "Thunderstorm") which has been created especially for this purpose gives a possibility of simultaneous registration of various types of energetic radiations generated at the time of discharge: the X-ray and gamma radiation [1 - 3], accelerated electrons [4, 5], the 0.1-30 MHz and 250 MHz radio emission [6-8]. A separate task is registration of the extensive air showers being born in thunderstorm atmosphere by energetic cosmic ray particles, and the study of their role in the initiation of lightning discharge [5, 9, 10]. Another open question which remains so far unclear is connected with multiple observations of neutron signal probably associated with lightning discharge, which have been made both at Tien Shan [11, 12], and reported in publications of other groups [13-18].
Specific feature of the Groza experimental complex is its mountain location just at the height of thunderclouds, so at thunderstorm times its detectors frequently occur being immersed immediately inside the lower part of active zone of the cloud where intensive electric field is present, and acceleration of charged particles have its place. Hence, for analysis of the data gained in this experiment, it is convenient to use the theoretical information concerning expected behavior of the charged particles ow within the range of a large scale atmospheric electric field. Such information could be obtained by the means of Monte-Carlo simulation of discharge development in a media which corresponds to characteristic conditions of Tien Shan experiment: the height of detector disposition between 3-4 km above the sea level, the spatial size of electric field region of the order of some kilometers, a rather low energy threshold of the used particle detectors (the thresholds about 30-50 keV for gamma-radiation, 1-3 MeV for electrons, and of the order of thermal energy for the neutrons aretypical for Groza experiment). Also, it is desirable to use a possibly complete set of existing particle models with precise account for interaction physics in a wide range of particle energies: from some hundreds of eV for secondary avalanche electrons, and up to some GeV for initial cosmic ray particles. These demands are met successfully by the modern program toolkit Geant4 [19] which is commonly used for simulation of particle interaction by analysis of the results of high energy physics and cosmic ray experiments in the leading centers of modern particle research: CERN, FERMILAB, IceCube, Auger installation etc.

The subject of present paper is the development of a proper Geant4 model for simulation of the particle avalanche behavior in thundercloud atmosphere, and the testing of its predictions in comparison with known theoretical and experimental data on thunderstorm generated particles axes. Later on, the simulations of this kind are intended for using in quantitative analysis of experimental data and in planning of appropriate detector design, in particular for the Tien Shan complex installation Groza, and can be useful in realization of other similar experiments.

Simulation model. Especially for the analysis of the data of Groza experiment, a simulation model was built on the basis of Geant4 toolkit which takes into account typical characteristics of as it is shown in figure 1, the spatial region to trace the particle trajectories in is a 5x5x5 km3 cube, and its geometrical center is accepted as an origin of the general coordinate system, with Z axis being directed "vertically" to the top side of considered volume. The whole space is supposed to be filled by the air with standard gas composition (75.5 mass percent of N, 23.2% O, 1.28% Ar and 0.01% C). The air pressure and temperature at "bottom" side of model volume are set to 675 mbar and 10°C correspondingly, in agreement with average atmospheric conditions at the altitude of Tien Shan station, and with elevation h above this level both the pressure and air density diminish exponentially ($\sim\exp(-h/H_0)$) with characteristic scale height $H_0 = 8,4$ km. The temperature decrease with altitude is accepted to be linear with the rate of 6°C/km. of the local Tien Shan environment.

According to common views, the key role in generation of electric field in thunderclouds must play the convection mechanism of charge separation driven by the Earth's gravitation [20], which generally acts in vertical direction. Correspondingly, in considered model it is set a uniform electric field E within a 1.5 km3 km high vertical cylinder with its direction parallel to axis, to ensure downward acceleration of the negatively charged particles (electrons). This supposition agrees with modern data on existence of the lower positively charged region in thundercloud structure [21]. The geometric center of cylindrical field region coincides with the center of enclosing cube. Hence, the bottom side of the model cubic space corresponds to observation level of Groza experiment, and 1 km above it occurs the lower border of the electric field region, like a situation commonly met in real thunderstorm events. The value of the field strength e was kept constant in each simulation run, and have been varied between 0.5-2.0 kV/m in different calculation series (more on this see below in section 3).

As one of the reasons which could trigger an electric discharge within thundercloud it is often considered the presence of charged seed particles in atmosphere, in particular electrons of extensive air showers (EAS) which are born abundantly by the 10^{14}-10^{16} eV primary cosmic ray nuclei [22, 23]. Following to this mechanism, in each simulation series the seed electrons with fixed energy were placed just in the center point of considered model volume, and the directions of their initial momentum were randomly spread inside the 4\pi solid angle (since the real EAS particles can y into thundercloud internals from any side). A number of simulations was made with primary energy varied in the limits of 100-1000 MeV since these are the energies which are typical for the most part of EASelectrons. The
subsequent history of the seed particles soas of all succeeding avalanche products was traced in every simulation run: the energy, momentum direction, 3D-coordinates of the start and final track point, and arrivaltime to the end of trajectory (counted since the moment of primary interaction) were kept for each product particle for further analysis.

The set of Geant4 physical models included in simulation involves the common processes of electromagnetic physics: the bremsstrahlung, multiple scattering, and ionization losses for electrons; the photo-, and Compton-effects, and pair production for gamma-radiation; and the positron annihilation (correspondingly, the modules G4Bremsstrahlung, G4MultipleScattering, G4Ionisation, G4PhotoElectricEffect, G4ComptonScattering, G4GammaConversion, G4plusAnnihilation of the Geant4 toolkit [24, 25]). Electromagnetic interactions of any charged hadrons were taken into account through corresponding model processes G4MultipleScattering and G4Ionisation.

Since the presence of low-energy charged particles which could be accelerated by the field is essential for the task we are interested in, the trajectories of both electrons and gamma-quanta were traced until their kinetic energy falls down a rather low threshold of 100 eV (due to ionization losses and photoelectric effect correspondingly). At the same time, in the output set of resulting simulation data for further analysis (e.g. to make a deposit into distributions presented below) were included only the particles which had the energy above 30 keV in point of their trajectory, in accordance with lower registration limit of some tens of keV which is typical for Groza detector complex.

The possibility of neutron production inside the developing electron-photon avalanche was ensured by the means of photo- and electronuclear reaction models from the standard Geant4 distribution (G4GammaNuclearReaction, G4ElectronNuclearReaction). Specific feature of neutron secondaries is chaotic trajectories resulting from a series of elastic collisions with nuclei of surrounding matter. Since we are interested in distribution of various characteristics of avalanche products at a number of fixed distances from the active zone of thundercloud, every neutron born in simulated avalanche was traced completely along its trajectory through all intermediate elastic interactions, and in the final dataset were included only its characteristics (the energy, momentum direction, etc) which happened to be in the most distant points from the center of model "thundercloud" volume (but which can occur being not a final point of the whole track). The simulation module for neutron physics takes into account the Geant4 models of elastic coincidences in the range from thermal and intermediate energies (~10^{-2} eV, G4NeutronHPThermalScattering) to the high neutron energies (4 eV–20 MeV, G4NeutronHPNuclear), and further on up to some GeV (G4LElastic). Correspondingly, the inelastic neutron interactions are presented by the low-(~10^{-2} eV–20 MeV, G4NeutronHPInelastic) and high-energy (20 MeV–5 GeV, G4BinaryCascade) reaction models. Besides, the low- and high-energy neutron capture models (G4NeutronHPCapture and G4LCapture) are taken into account.
The necessity to consider rather high energy of the order of some GeV in present simulation is stipulated by the need to take into account the product particles of the high energy cosmic-ray interactions.

For protons, anti-protons, and charged pions together with analogous processes of elastic and inelastic hadronic interactions the models of multiple scattering and ionization losses are considered (for negative pions also the process of their nuclear capture at rest, and for antiprotons, the annihilation process). Interaction sets of all unstable particles include the process of their decay (G4Decay).

Simulation results. Generation probability of a discharge avalanche. The conditions of effective avalanche generation in thunderstorm atmosphere are the subject of a number of theoretical papers concerning the theory of runaway breakdown mechanism [26-28] which is connected with energetic electrons from the tail of thermal energy distribution and seems now to be one of the leading probable hypothesis on the development of electric discharge in thunderclouds. The main conclusions which follow from this theory are the following: (1) the development of an electron-photon avalanche is possible in the field ε with the strength above some critical value ε_c, which is about 2.0–2.2 kV/cm at the sea level, and for the heights of the Tien Shan detector complex $\varepsilon_c \approx 1.3–1.4$ kV/cm; (2) some charged seed particles must be presented within the field region, e.g. the fast electrons from cosmic ray interaction with typical energy $E > m_n c^2 \varepsilon_c / 2 \varepsilon_c$ (which corresponds to condition of $E \geq 200–500$ kV for a near-critical field); (3) the characteristic spatial size of the field region must exceed the typical length of exponential avalanche development (about 100 m). The geometry of considered simulation model does satisfy all these demands.

In present simulation, the probability of an electron-photon avalanche was defined as a relation of the events with multiple generations of secondary product particles to the total number of simulated events. As a sign of avalanche development the threshold condition $N_{\text{sum}} > 10000$ was applied, where N_{sum} is the sum number of secondary particles with the energy above 100 eV born in successive interactions of primary electron; as preliminary simulations have shown, in the absence of field this condition gives a correct (zero) probability of avalanche generation excluding from the count δ-electrons and the particles of usual low-energy electron-photon cascades. The resulting distributions of the avalanche generation probability are presented in figure 2 in dependence on the strength of electric field ε and the energy of primary particle E_0. It is seen that the probability of avalanche appearance depends strongly both on the energy of the seed particle and on the tension of electric fields.

This probability starts to be noticeable (>10% of the total number of simulated events) by the strength of model field $E \sim 1.2–1.5$ kV/cm, just about the value of critical field ε_c, at which the discharge development do occur at the altitude of Tien Shan station due to the runaway breakdown mechanism (according to [28], $\varepsilon_c \sim 1.0$ kV/cm for the height position of the model “cloud” center, $\varepsilon_c \sim 1.2$ kV/cm at its lower border, and $\varepsilon_c \sim 1.4$ kV/cm at the altitude of Tien Shan station). On the other hand, the test simulation runs have shown that any attempts to increase the model field above 1.5 kV/cm lead to exponential growth of the multiplicity of secondary products even with the seed particle energy E_0 below 1 MeV, which means an
excess of the ε_0 threshold and transition into overcritical regime. Such an almost quantitative coincidence can confirm the principal correctness of the used simulation model.

Since it is well known that in real thunderstorm clouds the field values $\varepsilon > \varepsilon_0$ were never observed [29, 30] all simulation results presented below were obtained in the runs with a fixed tension of the model electric field $E = 1.5$ keV/cm.

Electromagnetic components of avalanche. The spatial and energy particle distributions in discharge avalanche was studied through building the energy spectra of generated secondary particles at different distances d from the center of the field region. Since in accepted simulation model this center coincides with the origin of coordinate system, the distance was defined as $d = \sqrt{x^2 + y^2 + z^2}$, where the coordinates (x, y, z) correspond to the end of simulated particle track. The resulting energy spectra for electron and gamma-ray avalanche components are presented in two plots on the top of figure 3. The spectra are shown separately for various ranges of distance d which correspond both to inside of the spatial region of electric field: $d = 0.75-1$ km (curves 1), $d = 1.25-1.5$ km (2), $d = 1.5-1.75$ km (3), and the space out of the field: $d = 2.0-2.25$ km (4), $d = 2.5-2.75$ km (5), $d = 2.75-3$ km (6), $d = 3.25-3.5$ km (7).

A characteristic feature of figure 3 spectra is the fast decrease of their intensity at the boundary of electric field: just at the 2 km distance from center point the particle intensity is an order of magnitude below its average value within the field region, and at the distance~2.5 km (which corresponds to observation level in considered simulation model) it is up to 100-300 times lower than in the field center. Hence, a practical conclusion can be drawn that for effective registration of the high-energy electromagnetic components of a discharge avalanche it is extremely desirable to place the detector system just inside the spatial region of particle acceleration i.e. at aposibly high altitude above the sea level, just within the thundercloud region.

Analogous conclusion on rapid recession of the particle density has been made in theoretical work [28] where the equations of kinetic theory were applied to study of therunaway breakdown effect. Also, the fast absorption of gamma-radiation emitted by lightning discharges was immediately observed at Tien Shan installation with a set of synchronously operating gamma-detectors distributed in a wide range (~500 m) of altitudes over a mountain slope [2, 3].

For comparison with situation of the real thunderstorms events, the energy spectra of some transient radiation bursts which have been registered experimentally in the moments of close lightning discharge at Tien Shan area shown on the top plots of figure 3 with triangle-shaped markers. In these measurements, the gamma-rays were registered with a scintillation detector based on a cylindrical NaI crystal, 110 mm in diameter and 110 mm in the height, which has been equipped with a number of threshold counter schemes to select scintillation pulses indifferent amplitude ranges, while the electron spectra were obtained with a multi-layer absorption spectrometer on a set of ionization counters.

The registration system of signal intensity in these measurements was strictly synchronized with the moment of atmospheric discharge by aradio-pulse from the lightning and operated with a 160 us time resolution, so the pulses of transient radiation were seen distinctly around the discharge moment, and their relative excess above the background count level can be calculated. A more detailed description of the Tien Shandetector system and the current experimental setup can be found in [31].

In the two upper plots of figure 3 it is seen a rather satisfactory agreement both in general form and slope between the simulated and experimental spectra. The expected angular and time distributions of the electron and gamma ray intensity are presented in the middle panels of figure 3. Zenith angle of particle arrival at a distinct distance d by simulation was calculated as $\theta = \arccos(z/d = \sqrt{x^2 + y^2 + z^2})$, where the (x, y, z) coordinates relate to the final point of particle trajectory. Since in accepted simulation geometry the electric field is supposed to be directed along the Z axis, the angle $\theta = 180^\circ$ corresponds to acceleration direction of the negatively charged particles.

It is seen that angular distributions have an asymmetric shape which is strongly elongated in backward hemisphere, i.e. along the acceleration direction of electrons. Such a concentration means that the scattering processes do not play any significant role, and the most part of electron and gamma radiations keep the direction distribution formed inside the acceleration area until the distance up to some kilometres. Similar anisotropy for distribution of gamma radiation has been obtained also in [28] on the basis of kinetic theory, and in a study of the behaviour of high-energy charged particles in a strong atmospheric electric field made with the use of CORSIKA simulation package [32].
Figure 3 – The simulation results concerning electromagnetic avalanche components. Top plots: differential energy spectra of the electrons (top left) and gamma-ray quanta (top right) obtained in simulation and seen both in- (curves 1–3) and outside (curves 4–7) of electric field region (see text), with separate triangle marks are shown the spectra of real radiation bursts registered experimentally by close lightning discharges [31]. The middle and bottom plots: the angular and time distributions of the intensity of avalanche electrons (left), and gamma rays (right); the curve numbers and distance intervals in these plots are the same as for corresponding energy spectra. Error bars correspond to statistical errors of either Monte Carlo simulation or experimental data points.

Two distributions in bottom plots of figure 3 present the time delay between the beginning of avalanche development and arrival of corresponding radiation particles to the points placed at the distance d from the center of the field region. At observation level ($d \sim 2$–3 km) both distributions have a prominent maximum in the region of 10–30 μs, in agreement with characteristic spike-like record of the gamma radiation signal which have been repeatedly registered in Tien Shan experiments [2, 3, 8] held with a 100–200 μs time resolution. This means that the requirement of a precise timing analysis of signal intensity with a better resolution time of the order of some microseconds is essentially desirable by design of experimental setups aimed to the investigation of thunderstorm connected radiations.
Besides electrons, the trajectories of positron type avalanche products were traced in simulation as well, and corresponding energy spectra, zenith angle, and time distributions were obtained analogously to the case of electron particles. The shape of all these distributions is quite similar to the shape of electron ones, but relative intensity of positron component is 2.5–3 orders of magnitude lower. From this one can state that the positively charged particles do not play any significant role in formation of signal detectable in installations of Groza experiment.

Generally, a rather satisfactory agreement achieved between the computation, experimental, and theoretical results on the electromagnetic avalanche components can be considered as an ample correctness proof of presented simulation.

The neutron component In the upper plot of figure 4the energy spectra of the neutrons born by avalanche development are shown which have been calculated over the various distance ranges from the center of electric field. In contrast to the case of gamma ray and electrons, the differential energy spectra of neutron component demonstrate their practical independence on the distance; all of them have the same power law shape with differential index $\gamma \approx 0.92$, and the close absolute intensity. Hence, a noticeable neutron signal could be expected at a rather significant distance, up to 2-3 km from discharge region; and the low energy neutrons must absolutely prevail among this signal: it is seen that the intensity of thermal neutrons is up to 10^6 times above its value in the MeV energy range. The angular distribution of the neutron type products in simulated avalanche is shown on the middle plot of figure 4. This distribution is much more isotropic than in the case of electromagnetic component, and both within the field region (curves 1,2,3) and at a rather significant distance from it (curves 4,5) it is practically uniform in a wide range of zenith angles.
The distribution of the neutron arrival times at different observation distances is shown in bottom plot of figure 4. It is seen that the maximum of neutron signal is achieved at typical times about 1-10 μs after initiation of discharge avalanche. Up to the times of ~30-50 μs the relative decrease of neutron intensity does not exceed an order of magnitude, in contrast to electrons and gamma rays which tend to disappear completely at this time. The neutron intensity remains at noticeable level (above 1% of its initial intensity) until the times of 100-300 μs which is the consequence of a comparatively long life time of thermal-neutrons in atmosphere. From this, a practical conclusion follows that any detector system aimed for experimental registration of neutrons born in an atmospheric discharge must have a considerable collection time of neutron signals, and the duration of data sampling periods of the order of some milliseconds besides the microsecond scale time resolution are desirable. At present time, these requirements are satisfied in detector design accepted in Groza experiment.

It should be stressed that the low time delays ≤10 μs before registration of neutron signal at a distance of somekilometers from discharge region predicted by simulation are direct consequence of the accepted mechanism of neutron production, where relativistic particles: the gammarays and high energy electrons play an intermediate role, and can be responsible for the fast neutron origin just invincinity to observation level. In practice, both the momentary and largely delayed (over a time of millisecond order) signals from neutron detectors have been registeredin Tien - Shan experiments [12].

Relative composition of discharge avalanche. The figure 5 presents distribution of simulated events over the multiplicity M of different types of secondary product particles generated at avalanche development. For both electromagnetic components M_k was calculated as a sum number of, correspondingly, electrons and gamma-ray quanta with the energy above 30 keV which have been found in simulation-avalanche, for the neutron component the multiplicity was counted without any energy threshold; all distributions are normalized to a total number of generated avalanche events.
In comparison of distribution maxima positions in figure 5 it is seen that electrons do prevail in the avalanche, while the relative intensity of gamma ray flux must be 20-30 times lower. Obviously, the significant abundance difference between electromagnetic components in an avalanche driven by electric field results from acceleration of low-energy electrons, and this is a specific feature of this type of atmospheric cascade which principally differs from the cascades of extensive air showers (EAS) initiated by cosmic ray particles, where a dynamic equilibrium constantly exists between both the electron and gamma ray components.

According to figure 5, the multiplicity of neutron signals is quite negligible, about some particles per a simulated discharge avalanche. Seemingly, this prediction does contradict to existing observations of thunderstorm related neutron signal in experiments mentioned above within the introduction section. This discrepancy may be caused by a lack in the used list of physical simulation models of some neutron production channel (besides the photo-electronuclear processes) which is significant in the real events.

A qualitative estimation of the absolute amount of particles participating in a real atmospheric discharge can be drawn from following considerations. In the frames of hypothesis of a crucial role which play the cosmic ray particles of $10^5 - 10^7$ eV EAS in lightning initiation [22, 23] the multiplicity of primary seed electrons N_e which simultaneously can give a start to development of the multitude of partial avalanches inside the electrically charged region of a thundercloud must be of the order of shower size, i.e. $N_e \sim 10^5 - 10^6$ for EAS of the said energies [33], and the great part of these particles must have the energy of the order of critical energy of the electromagnetic cascade theory (about 80 MeV in the air). According to figure 2, the particles with the energy of such an order must generate an avalanche practically with 100% probability when coming into the region of field with the strength about runaway breakdown threshold E_c, so the sum multiplicity of the charged particles participating in discharge must be of the order of $N_e \times n_i$, where n_i is the mean particles number in a partial avalanche. The distributions from figure 5 predict the most probable multiplicities about $<n_i> \sim 2000 - 3000$ and $<n_i> \sim 100$ correspondingly for electron and gamma ray components in a partial avalanche initiated by a 100 MeV seed particle. After multiplication, the sum multiplicity of discharge electrons occurs being about $\sim 10^9$, and that of the gamma ray quanta $\sim 10^8$. Analogous estimation for neutron component gives the value about $\sim 10^6$. Because of their roughness and wide scattering of conditions in real thunderstorm events, all these estimations must be taken in the sense of lower limit.

Taking into account the tendency to anisotropy of angular distribution which is specific for electromagnetic components, and supposing the area of the emitting thundercloud region to be of the order of 1 km2 (i.e. 10^{10} cm2), the total gamma-radiation flux from discharge area can be estimated as
In this case, the number of signal obtained from a gamma ray sensor of Groza experiment when detecting a discharge related radiation flux must be \(n \sim 1 \cdot S/\epsilon \), where \(S \) is the detector sensitive area, and \(\epsilon \) - its registration efficiency. Taking the typical values as \(S/\epsilon \sim (300/0.5) \text{ cm}^2 \) the resulting amount of detector pulses \(n \) must be about 1-10. This is just the case of typical experimental measurements like [2] and [3] which have been routinely obtained at Tien Shan station. Hence, in spite of its roughness the result of present estimation is quite reasonable.

Similar estimations concerning neutron component lead to resulting neutron flux about \(10^{-5} \text{ cm}^{-2} \text{ s}^{-1} \) at observation level, and to signal multiplicity about \(n \sim 0.1 \) pulses from neutron detector (for isotropic angular distribution of the neutron avalanche component, and for a typical effective area of neutron detector about 1000 cm²). In reality, the measurements with enhanced time resolution the number of neutron signals frequently occurs quite comparable with that of gamma ray, i.e. of some units or tens of neutron pulses registered from a single atmospheric discharge [12]. This contradiction may be another sign of essential discrepancy between the models of neutron generation accepted at simulation procedure and with what does take place in real events \(\epsilon \).

Conclusion. The program code for as far as possible complete simulation of the processes of particle acceleration inside a large-scale atmospheric electric field region was created in the frames of Groza experiment. The program is based on the Geant4 simulation toolkit and takes into account the specific environmental features of the Tien-Shan mountain station. The simulation results concerning observable parameters of the electromagnetic component of particle avalanche agree well with the data both of theoretical and experimental studies of avalanche development in atmospheric electric fields. This is an evidence of adequacy of the set of physical models put into simulation, and gives the reason for using the described program code for further quantitative analysis of experimental results.

From the practical point of view, the simulation results concerning an extremely anisotropic angular distribution of the electromagnetic avalanche components, and their limited path by realistic atmospheric conditions mean that for effective registration the active region of a thundercloud must occur just above, and as close as possible to detector system. Also, a large scattering must be expected in practice between the results obtained even in similar environment at different thunderstorm times. For precise registration of the time profile of excessive electromagnetic radiation from an atmospheric discharge the resolution of data acquisition system must be at least of the microsecond order.

At the same time, the intensity of neutron flux predicted by simulation seems to be significantly below the existing experimental data. This can be an indication of either existence in real thunderstorm events of some unaccounted additional channel of neutron generation, besides the mechanisms of photo- and electron production which have been included into simulation physics list, or this can be a sign of an extremely high influence of electromagnetic interference on electronics of neutron detectors from nearby electric discharges which mask or imitate the real neutron signal. Correspondingly, the design of neutron detector system for the next measurement seasons at Tien-Shan now is greatly modified with special attention paid to its electromagnetic shielding. On the other hand, the very fact of a possibility to exist for some effective mechanism of neutron generation in natural atmospheric discharges, besides any intermediate electromagnetic channel, is quite interesting in itself, and this problem remains open for further experimental investigations at Tien-Shan station.

In spite of low intensity prediction which results of simulation, the registration of neutron signal may occur more preferable at a distance of some kilometers from the active thundercloud region than that of the electromagnetic components, due to more uniform angular distribution and prolonged lifetime of emitted neutrons. Because of latter circumstance, any data acquisition system used for neutron registration must have a rather long sampling interval, at least of the order of some tens of milliseconds after a primary lightning trigger signal, and a microsecond scale time resolution.
А. Л. Шенетов, Т. Х. Садыков, К. М. Муканов, Л. И. Вильданова, А. Д. Мурадов, О. А. Новолодская, М. Е. Алиева

1 Ресей ырылым академиясы, П. Н. Лебедев ат-ы Физика Институты, Москва, Ресей,
2 Физика-технологиялық институты, Алматы, Қазақстан,
3 әл-Фараби атындагы Қазақ ұлттық университеті, Алматы, Қазақстан.
4 Ғарыш сауалыларының ұлы ғалымы стационасы, Алматы, Қазақстан,
5 Әбая атындагы Қазақ ұлттық педагогикалық университеті, Алматы, Қазақстан

GEANT4 ПРОГРАММАСЫ НЕТЕЗІНДЕ КҮН КУРКІРЕУГЕ БАЙЛАНЫСТЫ ТУЫНДАЙТЫҢ ЭЛЕКТРОН-ФОТОН АҒЫНЫҢ ЖОБАЛАУ

Аннотация. Төң-Шань бікі таулар көңіл-кілімінің орналасқан ғарыштық сауалдардың ғылыма зертте станциясының денеңінде ақырқы және электр өрісінде туындыған электрон-фотон ағынының дамуын моделдеу қ一向а. GEANT4 инструментариясы программасы құрылды. Бұл инструментарийдің ғылыми программасы аумақтында өндірілген эксперименттік құрылымдар таңдайт, және құрылымдар іс-шараларын қамтиды.

Моделирование развития электронно-фотонной лавины в атмосфере от грозовых туч с помощью программы GEANT4

Аннотация. На основе инструментария GEANT4 была разработана специальная программа для моделирования развития электронно-фотонной лавины в электрическом поле большого размера в типичных условиях окружающей среды Төң-Шаньской высокогорной научной станции космических лучей. Этот инструментарий предназначен, в частности, для планирования и анализа экспериментальных результатов, полученных в рамках программ Гроза. Основные предсказания моделирования относительно электромагнитных компонентов лавины: относительное превышение интенсивности электронной компоненты над гамма-лучами (30:1), их энергетических спектры (примерно, форма степенного закона с дифференциальным индексом -1,5-2 в диапазоне 30-10000 кэВ), а анизотропия их угловых распределений находится в хорошем согласии с результатами теоретических и экспериментальных исследований, которые были получены до этого в горных условиях. Прогнозируемое значение эмиссии гамма-излучения порядка 10^2 см^-2 на уровне наблюдения также достаточно хорошо соответствует прямым измерениям, выполненными на станции Төң-Шань. Эти данные подтверждают адекватность используемой имитационной модели для реальных событий.
грозы. В то же время предсказаны нами явления грозные по-видимому, на порядок недооценены по сравнению с данными соответствующих экспериментальных измерений; такое тяжелое несоответствие может быть свидетельством существования некоторого эффективного механизма генерации грозных в естественных атмосферных разрядах, помимо полностью электромагнитных фотообразных и электрон-ядерных взаимодействий, которые были применены в моделировании. Обсуждаются требования к проектированию экспериментальных установок, необходимых для изучения грозовых излучений на высоте горы, которые следуют из представленного моделирования.

Ключевые слова: гроза, молния, атмосферное электричество, убывающие электроны, моделирование, программа Geant4.

Information about authors:
Mukashev K.M., Al-Farabi Kazakh national university, Almaty, Kazakhstan; mukashev.kms@gmail.com; https://orcid.org/0000-0002-4349-4616

Vildanova L.I., Tien Shan Mountain Cosmic Ray Station of FIAN, Almaty, Kazakhstan; hvvild@mail.ru; https://orcid.org/0000-0001-8558-9026; https://orcid.org/0000-0001-8558-9026
Muradov A.D., Al-Farabi Kazakh national university, Almaty, Kazakhstan; abyl.muradov@gmail.com; https://orcid.org/0000-0002-7052-8228

Novolodskaya O.A., Institute for Physics and Technology, Almaty, Kazakhstan; novologa@yandex.ru; https://orcid.org/0000-0002-1978-2781
Alicova M.E., Abai Kazakh national pedagogical university, Almaty, Kazakhstan; moldir-2008@mail.ru; https://orcid.org/0000-0003-0440-6211

REFERENCES

