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TRADE-OFF TRANSPORTATION PROBLEM

Abstract. The purpose of the work is to offer a new solution to the transportation problem. The article looks
into a new type of transportation problems that take into account supply and demand. The classical transportation
problem expresses the interests of one party - goods supplier. Supply and demand exist in real market conditions.
The article introduces a new concept of dual transportation problem. Double transportation problem respects the
interests of supplier and consumer. Such problem is called double, since it gives two solutions. The article analyzes
different criteria for solving game-theoretic problems and chooses a suitable method for solving a transportation
problem. The article provides a solution to the transportation problem based on pure strategies using the minimax
criterion. Solving a double transportation problem allows finding the saddle point. The saddle point determines the
equilibrium point between supply and demand and is a market solution to the transportation problem. This approach
gives more possibilities for solving transportation problems in market conditions.
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Introduction. Mathematical linear programming problem is called a transportation problem
(Monge — Kantorovich) (Rachev, 1985, Levin, 2006). The problem situation is that there are many cargo
or goods suppliers and many consumers. Transportation problem involves finding an optimal cargo
transportation plan from suppliers to points of consumption with minimal transportation costs (Benamou,
Brenier, 2000). Transportation problem is called unbalanced or open if the total volume of cargo offers is
not equal to the volume of demand, necessary for points of consumption. A classical transportation prob-
lem is a problem with two types of optimality criteria. The first type is a cost criterion that requires a mini-
mum of transportation costs. The second type of criteria is a time criterion that requires a minimum of
transportation time. In logistics, the second criterion is implemented as a “just in time” paradigm (Aycock,
2003).

The title ‘transportation problem” includes a wide range of problems with a general mathematical
model (Champion, De Pascale, 2010, Chang et al., 2010, Davidsson, P., et al., 2005). These problems are
solved by linear programming methods (Dantzig, 2016). Solving the problem involves optimization
methods. The classical transportation problem can be solved by the simplex method (Nelder, Mead, 1965,
Tsvetkov, 2001). Taking into account the specifics of the transportation problem provides additional
solutions. Currently there are many fuzzy transportation problem options. A common weakness of stating
and solving the transportation problem is that it is not a market one.

The classical transportation problem represents the interests of one market participant and charac-
terizes the market supply. Besides supply, there is demand in the market, which is an equally important
independent factor. This factor is disregarded when solving transportation problems. Such information
situation gives rise to looking into a transportation problem, factoring in both supply and demand. Such a
transportation problem can be called a double one, since it provides two solutions: one for the supplier,
and one for the consumer.

Game-Theoretic Approach when Solving the Transportation Problem. Conditions for solving a
matrix problem can be called an information situation (Tsvetkov, 2012). An information situation is a
model of conditions for solving a problem or a model of a situation, under which a problem must be sol-
ved. The game-theoretic approach (Friedman, 1990, Camerer , 2011) accounts for the interests of two
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parties. Therefore, it can be used to analyze solutions of an open transportation problem. The game-
theoretic approach takes into account market demand and supply. To support decision-making, game
theory uses a set of mathematical models and rules for their application under uncertainty. Along with the
rules, the game may be characterized by the goals that each player seeks to achieve. To achieve the goals,
the player employs strategy, tactics and prompt actions. This approach brings the game theory and
management together.

In game theory, strategy is defined as a generalized plan for achieving one or several goals. In solving
a transportation problem, it is a basis (Tsvetkov, 2001). The following methods are used for solving a
transportation problem: the potential method, the Vogel’s method (Samuel, Venkatachalapathy, 2011) and
others.

Decision-making in game theory means an analytical approach to choosing the next best (Trizano-
Hermosilla, Alvarado, 2016) or an action sequence (Tikhonov, Tsvetkov, 2001). In solving a transpor-
tation problem, it is called an optimal plan. Transportation problem is described based on the matrix
model. Game theory calls such problems matrix games. Matrix game (Vijay, et al., 2005) — is a matrix
model representing a two-player zero-sum game. In a matrix game, the strategics of one player A are
displayed as rows, and the strategies of another player B are displayed as columns. For the purpose of a
transportation problem, let us consider the option when player A represents demand, and player B re-
presents supply. Matrix entries a;are called gains or payoffs, which is why the matrix of relations between
the players is called the payoff matrix (figure 1). Hereinafter we will denote the payoff matrix as A4.
Additionally, the matrix is also called the decision matrix.
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Figure 1 — Payoftf Matrix

Figure 1 shows a decision matrix with an auxiliary column on the left and an auxiliary row at the top.
These column and row show the interests of consumers 4 and the interests of suppliers B.

In game theory, strategy A is seen as an action, another strategy Bas a reaction. Sometimes each cell
or column of a matrix is characterized by a possible state called an external state. In this case, in addition
to the gain, each cell of the matrix will have another characteristic - the probability of an external state.
Let’s denote the probability of external state F; as g; — (figure 2). Figure 2 shows a payoff matrix with
states.
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Figure 2 — Payoff Matrix with Payoff and State Values

It is proved for matrix games that any of them has a solution. A solution can be found by reducing the
game model to a linear programming problem. Transportation problem is also solved by linear program-
ming methods; therefore, the information situation taken has algorithmic similarity, but a different
problem statement.

Finding Tradeoff Solutions. In the payoff matrix (figure 1) solutions are found based on certain
rules or criteria. In game theory, there are several proven criteria used in decision-making. Each criterion
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is based on a particular strategy and applies under specific conditions. For the sake of simplicity, further
analysis is carried out for strategy A, while strategy B is considered to be opposing. Strategy A involves
cash payment, while strategy B can only agree or disagree with the payment. There are a number of
criteria for finding solutions for the payoff matrix (figure 1). Let’s highlight some of the criteria.

The minimax principle (MM) (Lehmann, Romano, 2005). According to this criterion, strategy A,
where the minimum gain is maximum, is chosen as the optimal strategy. Consumers most often use this
criterion.

The Bayes—Laplace Criterion (Aldrich, 2008). The criterion is based on calculating the average gain
for each row of the payoff matrix and choosing the maximum therefrom. Consumers do not use this
criterion when the demand can be fully met.

The Savage criterion (Tikhonov, Tsvetkov, 2001). The concept of risk is introduced in the statistical
decision theory. Savage’s criterion is also called Savage’s minimax risk criterion. Consumers do not use
this criterion when the demand can be fully met.

The Hurwitz criterion (Gil, et al., 2004). Hurwitz suggested a criterion at a point lying between the
point of view of extreme optimism and extreme pessimism.

The Hodges—Lehmann criterion (Tikhonov, Tsvetkov, 2001). The criterion is based simultaneously
on the MM criterion and the Bayes-Laplace criterion. The v parameter expresses the degree of confidence
in the probability distribution used. If confidence is high, the Bayes-Laplace criterion will dominate,
otherwise the — MM-criterion will.

Application of the Minimax Principle for Solving a Double Transportation Problem. Pursuant to
the criterion, the rule for finding a solution to the transportation problem can be interpreted as follows:

One more column with the smallest a;, results of each row is added to the decision matrix. It is then
necessary to choose those options, in the rows of which there is the highest a,, value of this column.

With this criterion, the strategy when choosing a solution is based on the fact that player A tries to
lose as little as possible, that is, to eliminate the risk. This means that a decision maker cannot face a result
worse than the one he relies on. This defines the name of this criterion as maximin. It is reasonable to use
the maximin (MM) criterion if the following information situation occurs:

1. The possibility of occurrence of external states 7} is unknown;

2. The solution is implemented only once (no refund is possible);

3. It is necessary to eliminate the risk or minimize it.

The use of this criterion is based on consumer 4 ’s assumption that the supplier will answer every
move with a move where the gain is minimal. This is called a pessimistic point of view. Applying the
criterion involves analyzing the A4 payoff matrix.

The first step involves finding the minimum. For each value 7 (7= 1, m is the number of rows) the
minimum value of the gain is determined depending on the supplier B’s strategies used.

o=min; a; (i=1,m). (D

The 7 index in the description (1) of the min;i function defines the search range. In this case, the i
index varies in rows and the search is made by rows. The search determines the minimum gain for player
A, provided that he adopts his 7 th pure strategy.

The next step involves searching among these minimum gains. At the second step, such a strategy i =
i, is found, at which this minimum gain will be maximum, i.¢.

maxi min; ;= Qigo= (2) is found.

The number a defined by the formula (2) is called the net lower value of the game or maximin. It
shows what minimum gain consumer 4 can secure himself by applying his pure strategics with all sorts of
actions taken by supplier B. The value o in expression (2) is also called the maximin gain. This strategy
guarantees a gain of at least a.

You can choose supplier B'’s side and reason for it. Supplier B should strive to minimize player A’s
gain by applying its strategies. Therefore, for player B, the maximum is found according to expression (3)

oL = max; aj 3)
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The max gain of player 4 is determined in expression (3), provided that player B applies his jth pure
strategy, then player B searches for his j = j; strategy where player 4 will receive min gain, i.¢. finds

min; max; a;= d;;; = o . 4)

The o number, determined from the expression (4), is called the net upper value of the game or the
minimax. It shows the maximum gain supplier B can secure with its strategies. In other words, consumer
A, by applying his pure strategies, can secure a gain of at least o, and player B, by applying his pure stra-
tegies, can prevent player 4 from gaining more than «.

The principle dictating the players the choice of appropriate strategies (maximin and minimax) is
called the minimax principle.

Solving a Double Transportation Problem in Pure Strategies. Let’s analyze the fundamentals of
solving a double transportation problem in pure strategies. A zero-sum matrix game of two players 4,
Bcan be considered as follows. Consumer A has m strategies i = 1,2,...,m, supplier B has » strategies
j=1,2,...n Each pair of strategies (7,j) is assigned a number a;;, which expresses player A's gain at player
B’s expense if the first player uses his ith strategy, and B- his jth strategy. Figure 1 shows the payoff
matrix.

If we take a look at the payoff matrix A4 in figure 1, then each matrix game with the A4 matrix
comes down to consumer A choosing the A ith row, and supplier Bjth column. In such a game, consumer
A gets a a;; gain. In this situation, if a,;< 0, this means that consumer 4 pays a sum of | &, to supplier B. If
a;> 0, this means that supplier B sells products to consumer Afor the amount of] @;|. This ends the game.
Each player strategy i=1,m; j =1, n is called a pure strategy. The main thing in game theory is to find the
optimal players’ strategics. A player’s strategy is considered optimal if application thereof provides him
with the biggest guaranteed gain with all sorts of strategies of another player.

Payment matrix game o= a is said to have a saddle point in pure strategies and the nef value of the
game.

L= = A

Saddle point — is a pair of pure strategies (7,,7,) of players A and B respectively, when equality & = o
is achieved. In market interpretation, this means finding an equilibrium point between supply and demand.
When solving a transportation problem, this concept has the following meaning: if a consumer follows a
strategy that corresponds to the saddle point, a supplier cannot do better than follow a strategy that
corresponds to the saddle point. Mathematically, it may be written differently:

ijo < oo < oy %)

where i, j — are any pure strategies of players A and B respectively; (i,j,) — are strategies forming the
saddle point. According to (5), saddle element ¢,y is minimal in the i, th row and maximal in the j.th
column in the A4 matrix. A saddle point is found by finding the minimum element in each row of the
payoff matrix and checking it for being the maximum in its column. If so, it is a saddle element, and a pair
of strategies corresponding thereto, forms a saddle point, that is, an equilibrium point between supply and
demand.

A pair of pure strategies (7,,/,) of consumer 4 and supplier B, forming the saddle point, and saddle
element a,oj, are called the equilibrium solution to the transportation problem. At the same time, i, and
Jjeare called optimal pure strategies of consumer 4 and supplier B.

Conclusion. Accounting for the interests of not only the supplier, but also the consumer results in the
need to solve the transportation problem of a new type: ‘Demand and Supply Transportation Problem” or
“Trade-Off Transportation Problem’. Such a transportation problem can be called a double transportation
problem, since it provides two solutions: one for the supplier, and one for the consumer. Game-theoretic
methods are used to solve this problem. Using the minimax principle with pure strategies to solve the
transportation problem allows for finding a solution to the transportation problem in the form of a saddle
point. The saddle point corresponds to the point of market equilibrium between supply and demand and is
an equilibrium solution to the transportation problem, while the classical solution to the transportation
problem represents the interests of only one party and does not provide an equilibrium solution.
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B. 5. Ilgerkon

Hay41Ho-ucCie 10BaTeIbCKHI H MPOSKTHO-KOHCTPY KTOPCKAH HHCTHTYT HH(POPMATH3AIIIH,
ABTOMATH3AIMH U CBA3H HA KCIC3HOAOPOokHOM TpaHcnopre, AO "HUMAC", Mocksa, Poccusa

KOMIIPOMHUCCHBIE PEINEHHUA 3AJAY TPAHCIIOPTHPOBKH

Annortammust. Llens paboTel — MPEeIOKUTh HOBOE PEIICHHUE TPAHCIIOPTHOH IpoOieMbl. B crathe paccmarpu-
BACTCSl HOBBIM BHJA TPAHCHOPTHBIX NPOOJEM, VUHMTHIBAIOIIMHA CIPOC W TpetoskeHue. Kiaccmdeckas mpoOiema
TIEPEBO3KH BBIPAKACT MHTEPECHI OJHON CTOPOHBI — MOCTABIIMKA TOBapoB. CHPOC W NMPEATIOKCHHE CYIICCTBYIOT B
peambHBIX PBIHOYHBIX YCIOBHSX. B CcTarbe NMpeACTaBiACHA HOBAas KOHLEHIUSA ABOMHOM TpaHCIOPTHOH. /lBoifHas
TPAHCIIOPTHPOBKA YUUTHIBACT HHTCPCCH MOCTABIMMKA W moTpeOuTens. OHa HA3BIBACTCA MBOMHON, MOCKOJBKY OHA
JACT JBA peIlcHUS. B cTarbe aHANM3HUPYIOTCS Pa3IMUHbIC KPHUTCPHH PEINCHMS 33134 TCOPHH HIP H OIPEICIIETCS
TIOXO/UIIIH METO/] PEIICHUS TPAHCIIOPTHOH MpoOxeMbl. B cTaThe MpeACTaBICHO PEINCHUE TPAHCTIOPTHOW 3a1a4d
HA OCHOBE YHCTBIX CTPATETHH ¢ MCHOIB30BAHHEM MHHUMAKCHOTO KpHTEpHA. PelneHue NBOMHON TPAHCIIOPTHPOBKH
MO3BOJIET HAHTH CEANOBYFO TOUKy. CemnoBas TOUKA OMPEACISICT TOUKY PABHOBECHS MEKIY CIPOCOM H IIPEIIO-
JKCHHEM H SIBJLICTCSA PHIHOYHBIM PEIICHHEM IPOOIEMbI TPAHCHOPTUPOBKH. Takol MOAXO0J AaeT OONbINE BO3ZMOXK-
HOCTCH I PEIICHI TPAHCIIOPTHBIX MPOOIEM B PBIHOYHBIX YCIOBHIX.

KimoueBsbie c/oBa: 337a4a TPAHCHIOPTHPOBKH, ONTHUMAJBHOE PEIICHHE, TCOPHA HIP, CHPOC, HMPEAIO0KCHHE,
OTITUMH3ALTHSL.
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