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MATRIX MULTIPLIER OF POLYNOMIALS MODULO
ANALYSIS STARTING WITH THE LOWER
ORDER DIGITS OF THE MULTIPLIER

Abstract. The advantage of an unconventional data encryption system using non-positional polynomial number
systems (NPNS), known as polynomial residue number system, is considered. When hardware and software-hard-
ware implementations of cryptosystems based on the NPNS, circuit solutions are needed multipliers of polynomials
modulo an irreducible polynomial. In this paper, we present the design of matrix multiplier of polynomials modulo
irreducible polynomial. The correct operation of the proposed multiplier is verified by implementing it on the FPGA
of the company Xilinx of model Artix 7. In conclusion, a comparative analysis of the matrix multipliers considered is
given in terms of time parameters and hardware costs for their implementation.

Keywords: non-positional polynomial number system, partial residual formers, modulo two.

Introduction. The development of information and communication systems increases the need to
ensure data protection. At the same time, due to the specifics of the application, restrictions on physical
size and power consumption, individual devices have small computational resources [1]. For devices with
limited resources, standard cryptographic algorithms may be too complex, too slow, or too energy
intensive. The issues of creating and applying methods to improve the efficiency of cryptosystems with
hardware implementation remain relevant [2, 3].

Searching for ways to improve the efficiency of software and hardware calculations, methods for
detecting and correcting errors and creating highly reliable computer systems, research is being carried out
in the field of non-positional notation systems, such as the residual number system (RNS). In the classical
positional number system, the value of each digit in the designation of a number depends on its position.
In non-positional numeration systems, a large-digit integer in positional notation is represented as a
sequence of several positional numbers of small bitness. These numbers are the residues of dividing the
original number by moduli of RNS.

The basis for creating the proposed models of cryptosystems [4-9] are non-traditional encryption
systems and digital signatures. These systems are developed on the basis of an algebraic approach using
non-positional polynomial number systems (NPNS), known as polynomial RNS.

Improving the efficiency of the hardware implementation of these systems is provided by the rules of
the NPNS, in which all arithmetic operations can be performed in parallel using the base modules of the
NPNS. The features of the NPNS give significant advantages over the positional number system when
performing modular operations of addition, subtraction and multiplication. This is especially true if large-
digit numbers act as operands [10].
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In non-positional cryptosystems, the cryptographic strength of the encryption algorithms and digital
signature generation, which is characterized by a complete secret key, is used as a criterion for crypto-
graphic strength. This key depends not only on its length, but also on the selected system of the polyno-
mial bases of the NPNS, as well as on the number of all possible permutations of the bases in the system.

With increasing order of irreducible polynomials with binary coefficients, their number is rapidly
growing. In this regard, a wide choice of polynomial bases is possible.

In [4], arithmetic of non-positional number systems with polynomial bases and its applications to
problems of increasing reliability were developed. It is shown that the algebra of polynomials over a field
modulo an irreducible polynomial over this field is a field and the representation of a polynomial in non-
positional form is the only one (an analogue of the Chinese remainder theorem for polynomials). The rules
for performing arithmetic operations in the NPNS and restoring a polynomial from its residues are also
defined.

The implementation of cryptosystems based on the NPNS can be implemented in software, hardware
or software-hardware methods. The main advantage of the software implementation is their flexibility,
which makes it possible to quickly rebuild cryptoalgorithms, the main disadvantage is a significantly
lower speed compared to the hardware implementation. Software and hardware implementation of
cryptosystems combines the advantages of software and hardware implementation. With hardware and
software-hardware implementations of cryptosystems based on the NPNS, the central unit is the multi-
pliers of polynomials modulo an irreducible polynomial, where repeated routine calculations are
performed on encryption and decryption of data. Therefore, the development of devices for multiplying
polynomials modulo an irreducible polynomial is relevant. In such multipliers, the multiplier is full A(x),
having degree m, the binary image of which is part of the plaintext, the multiplier is polynomial B(x),
having degree m, which is the key for encrypting the polynomial A(X). The module is an irreducible
polynomial P(x), which is randomly selected from the set of irreducible polynomials with degree m. After
multiplying modulo polynomials, we obtain the polynomial R(x) which is part of the ciphertext.

When decrypted, the polynomial of the ciphertext R(x) acts as a multiplicand, and the multiplier is
the reverse key B'(x). After multiplying R(x) by B'(x) modulo P(x), we get a part of the plaintext - the
polynomial A(x).

There are two ways to multiply polynomials modulo an irreducible polynomial. In the first method of
multiplying polynomials, multiplication begins with an analysis of the higher order of the multiplier. At
the same time, in each multiplication step, the next partial remainder is shifted one digit to the left. And in
the second method, multiplication begins with an analysis of the lower order of the multiplier with a shift
of the next partial remainder by one digit towards the older one.

The matrix multiplier of polynomials modulo an irreducible polynomial, where multiplication begins
with an analysis of the higher order of the multiplier was considered in [11].

The matrix multiplier scheme of polynomials modulo an irreducible polynomial, where multi-
plication begins with an analysis of the lower order bits of the multiplier. In the matrix multiplier of
polynomials modulo is performed in N-1 stages according to the number of digits of the multiplier. Each
stage consists of three sub-steps. In the first sub-step, the partial remainder r; is calculated by modifying
twice the previous partial residual 2r; modulo, i.e. =21, ;modP. In the second sub-step, the partial residues
1; logical are multiplied by the corresponding bits of the b; of the multiplier, starting with the lower order
digit. In the third sub-step, an intermediate residue R; is formed by modifying the sum (r;*b;)+R;.; modulo.

Figure 1 shows a block diagram of the matrix multiplier of polynomials modulo an irreducible poly-
nomial, where multiplication begins with the analysis of the lower digits of the polynomial multiplier with
a shift of partial residues by one bit in the direction of the higher digit. The multiplier consists of four
blocks: 1 - the block is a block of registers, which includes the register of the module P(x) and the register
of the multiplier B(x), the block of the PRS, (PRS; ~ PRSy.;) , block of circuits AND 3 (AND; +~ ANDy;),
block of adders modulo two (MA,; + MA2y,), delay lines 5.

Consider the operation of the device. The signal "START", which is fed into the circuit through input
6 to the register Pr P(x) from input 7, the binary coefficients of the polynomial P(x) are received — the
module, and to the register Pr B(x) from input 9, the binary coefficients of the polynomial B(x) is a
multiplier. Binary coefficients of the irreducible polynomial P(x) - module from the outputs of the register
P(x) are fed to the first inputs of the formers PRS; + PRSy.;. The multiplicand A(x) (input 8) with a shift
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Figure 1 — Block diagram of the matrix multiplier of polynomials modulo an irreducible polynomial,
where multiplication begins with the analysis of the lower order of the polynomial — multiplier

by one bit in the direction of the higher discharge, i.e. 2¥*A(x) = 2*r, is fed to the second inputs PRS; and
without shift is transmitted to the information inputs of the AND, circuit, the value of the b, bit is fed to its
control input from the output of the B(x) register. At the outputs of PRS;, a partial residual r; = 2 * r, mod P(x)
is formed, which is fed with a shift by one bit to the second input of the PRS; and without a shift is
transmitted to the information inputs of the AND, circuit, to the control input of which the bit 5; value is
fed from Pr B(x). When b; = 1, the value of r; from the output of AND; is transmitted to the first inputs of
the adder modulo two MA2,, and the second information inputs of which are fed the value ry = Ry = A(x)
and the intermediate balance is formed at the output of the MA2; by calculating Ry = r1@®ry, which is
transmitted to the second inputs of the MA2,. The PRS, having received the value 2*r; from the output of
the PRS; at its output forms a partial residual 7, which with a shift of one digit to the left is transmitted to
the input of the PRS; and without a shift to the information inputs of the AND; circuit. To the control
input of which is fed bit b, from the register B(x). When b, = 1, the value of 1, is transmitted to the infor-
mation inputs of the MA2,, the other information input is supplied with the value Ry from the outputs of
the MA2, and forms the intermediate remainder R,, which is transmitted to the information inputs of the
MA2;.

Further, partial residues 13,7y, ...,7w—1 and intermediate residues Rs, Ry, ..., Ry_1 are formed in the
same way. After the formation of the intermediate residue Ry_, the information output MA2, _; forms
the result, which by the signal 10 (*end of operation™) outputs it through the output of the device 11.

Figure 2 shows the block diagram of the PRS;, which consists of a modulo-two adder and an MS
multiplexer. The multiplexer, in turn, consists of AND, AND, schemes and OR scheme. The first partial
adder 7;_4 is fed to the first inputs of the adder with a shift by one bit in the direction of the higher digit,
which is equivalent to multiplying 7;_; by two. In addition, the value of 2 * r;_; is also fed to the infor-
mation inputs of the AND; circuits. The information inputs of the W, scheme are fed with the result of the
addition of 2 * 1;_; ®P(x). Switching of values 2 * 7;_; from input AND; or AND, depends on the values
of the most significant digit (S,) of the value of doubled partial residue 2 * r;_;. At S;=1, the output of the
MS circuit through the AND, and OR circuits is the result of the sum modulo two result (2 * 1,_1©®P(x)),
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and at S,=0, this signal passing through the inverter is NOT fed to input circuit AND,, allowing the
passage of the values 2 * 1;_1 to the output MS. Thus, for values of 2 * r;_; < P(x) (while S;=0), the
output of the PRS circuit produces the value r; = 2 * 1;_4, and for values of 2 * r;_; > P(x) (at that S,=1)
at the output PRSy_; the value r; = 2 * r;_@®P(x) is shaped.

The MA2; is an modulo-two n-bit adder, where the operation R; = 1; + R;_ is performed.

Consider the work of the multiplier on a specific example.

Let P(x) = x° + x® + 1, the binary image of P(x): 101001;

A(x) = x* + x + 1, binary image A(x): 10011;

B(x) = x* + x? + x + 1, binary image B(x): 10111.

The order of calculation of R = [A(x) * B(x)]mod P(x) is given in table.

To implement the above example on programmable logic integrated circuits (FPGA), consider the
logical chain of operations performed. The binary image values of the polynomials A(x) and B(x) are fed
to the input of the programmable logic integrated circuit. At the output of MA2,,, the result of the
multiplication R=[A(x)*B(x)|mod(P(x)) is formed. The current values of R; R, ... R, is formed at the
outputs of the corresponding adder circuits modulo MA2, MA2, ... MA2,,. The first step is set
separately, according to the description of the zero stage from Table 1, where r, takes the values of the
input signal A4, also in the MA2; block, the first value R, is equal to r,. From the next step, system
operations are performed according to the above description, using the modulo multiplier operator. To
check the correctness of the proposed algorithm on the integrated circuit, a time diagram was built on the
FPGA of the Artix 7 model shown in Figure 3. On the time diagram (aigure 3), on¢ can observe the results
of the calculation on each clock signal whose numerical values correspond to the values shown in Table 1.
The program is written in the Verilog language, consisting of a procedural block, a register (data type) of
calculation parameters, a ternary operator, a shift operator, and a continuous assignment operator [12-14].

The number of used FPGA resources of the Artix 7 model does not exceed 1%: the number of
registers is 44 out of 126,800, the number of logical cells is 82 out of 63 400. The results obtained confirm
the correctness of the proposed algorithm and the proposed theory on the FPGA.

In conclusion, a comparative analysis of the algorithm with a matrix multiplier with the results of
[11] was carried out. The comparison is carried out according to the time of multiplication — Ty, and the
hardware cost Qy,; required to build them.

From figure 1, it is easy to determine the components of the circuit from the total delays at which the
multiplication time can be determined: PRS; g PRSy:1 — AND ANDy; — MAy ;. Then the multiplication
time can be determined by the following relationship:

Tt =N-1(Tprg) + Tanp Loz )

where Tprs is the amount of delay on one partial residual shaper; Tyaz — delay time on the adder modulo
two; Tanp 1s the delay time in the circuit ANDy ;.
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Order of calculation of R

Stages PRS; (1) b, *1; MA2; (R)
0 r~=10011 bexr=10011 R=r17~10011
1;=2 rpmod P(x) RE® Ry
21, = 100110 R~10011
1 © bprr=01111 ©
P(x) =101001 r, =01111
r, =001111 R, = 11100
1,=2 1;mod P(x) R,=1,BR,;
2r, = 011110 R,=11100
2 © byxr,=011110 ©
P(x) =101001 r, = 11110
r, = 011110 R, =00010
1572 rymod P(x)
2r, = 111100
3 © by*r,=0 R3=R,=00010
P(x) =101001
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Figure 3 — Timing coding diagram for a 5-bit binary information message in an Artix 7 FPGA

From figure 1, it is also not difficult to determine the ratios, with which you can calculate the

hardware cost of the multiplier:

o1t = N-1(Oprse Oriad) +NQunp

where Oprs - the cost of logic circuits for building one partial residual shaper; Ouuz - the cost of logic
circuits for building one adder modulo two; NO ,yp - the cost of N logic circuits 1.
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From the matrix multiplier scheme of polynomials modulo an irreducible polynomial, where multi-
plication begins with an analysis of the most significant bits [10], it is possible to determine the route of
the input signal, which determines the maximum delay, i.e. multiplication time of polynomials, where
multiplication begins with the analysis of the most significant digit: AND, — MA2, — PRS, - MA2, -
— PRS2 bé MA2N_2 — PRSN_2 — MAZN_1 — PRSN_1

then:
ngllt: Lanp + N-1(Tvz + Ters) 3)
The magnitude of the hardware costs can be determined from the following relationship:
QB8 .= NOunp + N-1(Orpio+ Oprs) €))
From relations (2) and (4) it can be seen that the considered matrix multipliers are equal in hardware

costs, i.e. QoM. = QB . and they differ in speed.

Let us consider in more detail the components of formulas (1) and (2). From figure 2 that
Ters=™ (aaazt Taass mturn, Jaz>=3 {13 and [hs=2713
where, 7 3- the delay time on the logical elements AND-NOT, OR-NOT

Then 7M. =N-1 (315 + 2 Tew)+ Towt 3= N-1(5T1x)+ 4T1x=N5T15— 5[t 4 s

Tovte™ N5 Tip. %)
Toiie=N-1(8T1e)+ Trs=N771z (6)

From the relation (5) and (6) it is seen that with the same hardware costs of the matrix multiplier
polynomials modulo an irreducible polynomial, where multiplication begins with the lower order of the
multiplier has a significant advantage in speed.

M. H. Kasmvoanaes', C. T. TembsmvGaes’, C. THatox?,
C. A. Xoxzi08’, M. M. Marsom', E. T. Ko:xary.ios’

! AKIIAPATTHIK JKOHE ECENTEyilll TEXHONOTHAIAP HHCTHTYTHI, ATMaThl, Kazakcran,
Y ATTHIK aBHAISIIBIK YHEBEpCUTETi, Knes, Ykpanna,
> (pmp-Dapabu arsiEmarer Kaszak ynrTeiK yEEBEpcHTeTi, Amvarsr, Kasakctan

KOBEUTKIIITIH KILII PA3PSIIBIHAH BACTAII TAJJAATBIH MOAY.II BOMBIHILA
MOJTMHOMIAPILIH MATPUIIAJIBIK KOBENTKIIIT

Annotamus, KaTapIKThl KIACTHIH NOJHHOMIBIK JKYHECI PeTiHAC OCNTilm, ¢cenTeymiH OCHMORHIMITBIK IO -
HOMABIK oKyiecin (EBIDK) malimamany apKeiabl MOTIMETTEPAl MH(PIAYABIH JICTYPIl €MEC KYHECIHIH apTHIKIIbI-
TBIKTapbl KapacTeipsliasl. EBIDK Herizinae KpHITOXKYHEHIH aIlIapaTThIK XKOHE OarJapiaMalbIK-alnapaTThIK 1CKe
aChIPBUIYBI KE31HAC KEATIPLIMEHTIH MOTMHOMHBIH MOy I OOMBIHIIA MTOJTMHOMIAPIBIH KOOCHTKIMITEPIHIH CYI0aIBIK
memiMi KakeT. OChI )KYMBICTa MOTIMETTEPAl MU(PIAn >KOHE IMHQPHIH AIIbII OKyFa MYMKIHAIK OEpeTiH, MOy
OofibIHIIA MOTMHOMIAP KOOCHTKIMIIHIH MATPUIANBIK CYJI0ACHI KENTIPIITCH. ¥ CHIHBLUIFAH KOOCHTKIMTIH yKYMBIC ic-
TEYiHIH AYPHICTHIFH XilinX (pupMaceIHBIH Artix 7 MOJCIHI HETi3iHACTI OAFAAPIAMANAHATHIH JTOTHKATBIK HHTCTPATIIBIK
cymoaceiaa (BJIMC) sxy3ere acsIpy apKbLIbl TCKCepiani. KOpBITHIHIBICHHAA KAPACTHIPBLIIFAH MATPHLIAIBIK KOOCHT-
KIIITEPAIH KY3ere aChIPhUIYBI YIIIH KAXKETTI AIIApATTHIK IIBFBIHBI YKOHE YAKBITTHIK MapaMeTpIcpiHe OailIaHbICThI
CATBICTBIPMAIIBI TATAAY KETIPIITCH.

Tyiiin ce3aep: ccenTeyAiH OCHITO3HINMIBIK TIOTHHOMAIBIK KYHCCI, MAPTBIIAH KAIABIKTAPABI KABIMTACTHIP-
FBIITAP, MOAYJI €Ki OOMBIHIIA CYyMMATOP.
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"MBCTHTYT ME(OPMALIHOHHBIX H BRMHCTHTEILHBIX TEXHOIOTHI, Amvarsr, Kasaxcran,
’HannoHATbHBIH ABHAIIMOHHBIH yHuBepcuter, Kues, Ykpausa,
KasaxcKkuit HAMOHATBHBIH YHHBEPCHTET HM. aTb-Papadu, Anmatsr, Kazaxcran

MATPAYHBIA YMHOXHUTEJb MIOJTHHOMOB 110 MOAYJIIO C AHAJIU30M
HAUYHWHASA C MJTAAIIUX PA3ZPAN0B MHOKUTEJIA

Annoramus., PaccMaTpuBacTCAd MPECHMYIICCTBO HCTPATUIIMOHHON CHCTEMBI IMM(POBAHWUSA AAHHBIX C HC-
TOJTE30BAHMCM HCMIO3HIIMOHHBIX MOIMHOMHAIBHEIX cucteM cumcncHua (HITCC), u3BeCTHBIH KaK MOJIMTHOMHATEHBIC
CHCTCMBI OCTATOYHBIX KJ1aCCOB. [IpH ammapaTHOH W MPOTPAMMHO-ANIAPATHOH Peamu3almid KPHIOTOCHCTEM Ha 0ase
HITCC HeoOXODMMBI CXCMHBIC PCIICHHS YMHOXKHTCIH TMOJHHOMOB MO MOIYJIO HCMPHBOAMMOTO MOIHHOMA. B
JAHHOH PabOTe MPHBOIUTHCS MATPHYHAS CXEMA YMHOMKHTEIS MOJTHHOMOB MO0 MOJYJIO, KOTOPasi MO3BOJLIET IIH()-
poBaTh W pacmu()poBaTh JAHHBIX. [IpaBHIEHOCTE ()YHKIHOHHPOBAHHC MPCITOKCHHOTO YMHOKHUTCISA MPOBCPCHO
myteM peanm3anuu ero Ha [UIMC gupmer Xilinx momemm Artix 7. B 3axmroucHUn JACTCA CPABHUTCIBHBIN aHATIN3
PaCcCMOTPEHHBIX MATPHUYHBIX YMHOKUTETICH C TOUKU 3PECHUSA BPEMECHHBIX MAPAMETPOB W aNMApaTHBIX 3aTpar A UX
peamm3anum.

KmodeBnie CJ10BA: HCTMO3HIMOHHAA TOJHHOMHATGHAA CHCTCMA CUHCICHHA, (DOPMHPOBATCIH YACTHIHBIX
OCTaTKOB, CyMMAaTOP MO MOIYJIFO ABA.
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