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THE DESIGN OF UNIQUE MECHANISMS AND MACHINES. 11

Abstract. A cardinal breakthrough is possible in the transition of mechanisms of lower class (class II) to high
class (class IV and above) to design new mechanisms and machines. For the first time a new concept based on
approximation theory is offered for mechanisms of high class aimed at solving kinematic, kinetostatic and dynamic
problems. Methods, algorithms and programs are developed to define the position of links and reaction forces in the
joints for mechanism of class [V at any given accuracy. A numerical experiment has shown a huge advantage of
mechanism of class IV to design a new mechanism for aircraft’s chassis (the mechanism of the robotics and auto
crane’s boom outreach having a heavy payload), as well as for control devices of working bodies with high speeds
for hydraulic hammers and presses. At the same time minimum of reaction forces in the joints for these mechanisms
as well as the minimum of balancing force to select the required drive with low power is provided.

Key words: kinetostatic, dynamics, mechanism of high class, mechanical engineering, robotics.

Introduction. The kinematic-dynamic model for mechanism of high class is described by diffe-
rential-algebraic equations (DAE)[1]. Some questions of the investigation of DAE are given in [2-5]. The
complete analysis of mechanisms of high class involves the simultaneous solution of kinematic, kine-
tostatic and dynamic problems. According to the classical theory of mechanisms and machines a separate
solution of complex problems is considered. Planar lever mechanism of class IV as the basic mechanism
out of all mechanisms of high class and in much the same way a four-link mechanism out of mechanisms
of lower class II are going to be studied.

This work is devoted to the development of a new calculation theory for the underlying mechanism of
class IV done on the basis of the theory of differential equations and the approximation theory. In this
article we consider singular differential-algebraic equations and a power analysis of these mechanisms.

The proposed methods, algorithms and the held computational experiment made possibilities to
identify the unique characteristics of the above mentioned mechanism of class IV and their use in various
scientific and technological fields (in the mechanisms like departure chassis of an aircraft, load-lifting
cranes, presses, robots and other devices).

The common model for mechanism of high class. Suppose the mechanism of high class (MHC)
consists of » moving links. Numbers of output links vary from 1 to »-m, and the number of input ones
varies from #-m +1 to n, m is the number of input links directly related to drive units (Figure 1). The
proposed mechanism of the numbering units enables the use of vector-matrix notation in solving various
equations in kinematics and dynamics.

Then the general model for mechanism of class IV (n=6, m=2) is represented in the form:

- differential equations of this mechanism’s dynamics having two degrees of freedom (two
generalized coordinates, n=6, m=2) are:

d (oL oL .
E(a_q',) _aT,-_Qf’] =1m (1)

and having the initial conditions
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q;j (to), q;(to) (2)

where L is the Lagrangian, q;, 4,, Q; are generalized coordinates, velocity and force.

The kinematic model of the mechanism of the IV class ( shown in figure 1) is described by a system
of trigonometric equations:
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Figure 1 — Mechanism of class IV having rotational pairs

[, cosep, +1,cosp, +1;cosp, +1,cosp, —I cosp, —1I,cosp, =0,
[, sing, +1,sing, +/;sinp, +[;sinp, - smep, —[,sinp, =0,
€)

I cos(p, —er,)—1; cos(p; +a; )+ 1, cosg, +1scosp, —I, cosp, —1,cosp, =0,

I"sin(p, —a,)— 1y sin(p, + a, )+ 1,sin @, + I, sinp, — I, singp, —1,sing, =0.

Systems (1), (3) are a system of differential-algebraic equations (DAE). This terminology is accepted
by scientists all over the world.

From the system (3) we have the dependence of the angular coordinates ¢ of the output links on the
angular coordinates g of the input links of the mechanism:

p) = eq(t)). “)

It should be noted that in the first part the system of trigonometric Equations (3) were presented in a
differential form. Therefore, the differential form of the system (3) has its advantages and disadvantages
associated with the matrix 4. Only the case when the DAS is related to the ordinary differential equations
(ODE) for | A | # 0 is considered. The singularity of the DAY arises when | A | = 0.

In this case, the application of numerical Runge-Kutta’s methods is impossible. It is necessary to look
for other approaches. Known approaches of foreign [2, 3] and russian [4] scientists are not very suitable
for their use, since the error in the developed numerical methods is quite large. This error violates the
reliability of the kinematic model (3).

Task 1. Solve the general model (1) - (3) for mechanism of class IV using approximation theory and
Runge-Kutta’s method for |A| # 0 or |A| = 0.

We first determine the Lagrangian L. for the mechanism of class IV
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m] JqJ

L=Y% mil L‘pl — ¥t myglising; + Z 26':5 m;gl;sing; +

l3 ‘P3

n 11 ki +miglisin(o; —a;) + +miglisin(Q; + as), )

where m is the mass of the links, g is the acceleration due to gravity. When the Lagrange’s operator of the
second kind is applied to the function (7), the following derivatives are necessary

(Pl(t) — <6‘PL(Q),q(t)> (Pl(t) — <a(pl(q),LI(t)> I q(t) 92 (Pz(q)q(t) i= 1 -m (6)

Then the system (1) can be written in the form of a normal Cauchy form:

q= f<q(t) o), 5- s (t) (t) M(t)> t € [to, t4] (7)

where f is a vector- function of dimension 2mx1.

Approximation theory studies the question of the possibility of approximate representation of some
mathematical objects by other objects of simpler nature. Now us show the possibility of applying the
theory of approximations to the numerical solution of the Cauchy problem (1)-(3). Let A@ be the error in
calculating the angular coordinates, then we can use the approximation theory.

Lemma. For the numerical realization of the trigonometric identity

cos?@ +sin?p =1 (8)
is applied formula
cos (¢ + Ap)cos@ + sin(@ + A@)sing = cosA@. 9

Proof. We apply trigonometric transformations. Then the equality (8) takes the form:
cos (@ + Ap)cos@ + sin(p + Ap)sing = (cospcosAp — sinpsinA@)cosp+(sinpcosAp +
cospsinA@)sing. We pirve such terms in this ratio. Then we get cos (¢ +A@)cose +
+sin(p + Ap)sing = cosAg 1t follows from the last expression that limy,_,q cosAg = 1. This limit
ensures the fulfillment of the trigonometric identity.

Note 1. We introduce the notation § = cosA¢@. Then, by choosing 6 (or Ag), the relation 1-§ = ¢
establishes the fulfillment of the trigonometric identity with a given accuracy.

Theorem 1. The numerical realization of the system of trigonometric equations (3) can be
represented as a system of linear algebraic equations.

Proof. On the basis of the lemma, the trigonometric system (3) after applying the scalar product and

excluding the angular coordinates ¢,, @, goes into the system of linear equations for variables cos (/Jlk ”

k+1 k+1
sin /™' cos i, sin gt

2

SI2 = (=1, cosp™ — 1, cospi™ — I, cospt™ + 1, cosps™ +1, cosp, ) *
*(=1, cos @ —1,cospt — I, cospt +1 cospl +1,cosg,)+
+(~1, sing/™ — 1, sinf ™ — I singl ™ + 1, sin g™ + 1, sing,) *

* (=, singf —1,sin@f —1I,singl +1 sinp! +1, cosp,), (10)

SI7 = (=1, cos(pf ™ —ot,) =L, cos(pr™ + ) — I cos @™ + 1, cos i + 1, cos ) *
* (=1, cos(@pf —a)—1, cos(pf +ay)—1, cospt +1 cospl +1, cos,)+

+( l Sln( k+1 k+1

—a,) - Lsin(@pf " + @)~ L sing! ! + 1, singt ™ + 1, sin @) *
* (=1, sin(pf — )1, sin(@f + o)~ 1 singl +1 sing! +1, cosg,),

cosp ! cospl +sing/ " sing’ =6, (11)
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k+1 k : k+1: k
cos@;  cos; +sing;  sing; =0

where « is iteration number, k=0, 1,2, ..., 1.
We determine the variables cos@, ™", sing™", cosg!", sin@!™ from the systems (10), (11) and
substitute them into the system (3).

Then we find the quantities cos %™, sing; ", cos@l™, sinp)™:
cos @i = (=1, cosp!™ —1, cos @™ — I cospt™ +1 cospl™ +1,cosp,) /1.
sin " = (I, sing, +1,sing™ + 1 singt™” —1 sing, —1,sing,)/1, , (12)

cospi™ = (-1 cos(p, — o, )1} cos(qpéHl +(x3)—l5 cospt™ +1, cospt™ +1,cos,)/ 1,

k+1 k+1 k+1 k+1

singl ! = (-] sin(qp1 — 051)—13* sin(qp3 + 053)—15 sing; +1,;sing, +1,sing,)/l,.

We note that for £ = 0 in the linear systems (10-12), the initial values of the functions cosq;(¢;),
sing; (t;) are determined on the base [5] .

Note 2. The left-hand sides of the system (10) are the scalar product of the vectors (I%,I%*1),

(1%, 1%*1y on the k and k + 1 steps. Let § =1. In this case, the equation (11) asserts that the projection of

the vector I¥ on to the direction {¥*1 is equal to I, . Obviously, the length of the vector {5+, found from

the system (10), will not be equal to I, . Therefore, the normalization of the vector [ is required. This is
true for the vectors [%, [¥*1 and the unit vectors in the last two equations (11) of the whole system, also for
the right-hand side of the system (10), which is the scalar product of unit vectors and vectors /.

We introduce the notation x¥ = cosq;(ty), y¥ = sing;(t,). These values are then normalized:
k

k
xlk = x—‘l ,yl-k = y—il,i =1,2,3,4.
2+ vz ((x2+ @)z
Further, we find the angular coordinates:
k
(p{‘ = @;(t;) = (Jtrctgj:—;c + nm, (13)

where x¥ = cos@;(t), v = sing;(t).

The initial values of variables @; (i), @;(t;) are determined on the base formula (14). The discrete
velocities @* and the accelerations ¢* in the Lagrange’s operator are found from the formulas of
numerical differentiation [6] by the found angular coordinates @ (t;.).

In conclusion, we represent the continuous system (7) in a discrete form:

a a?
q"”=q"+f<q(tk),w(tk),ﬁ(tk),a—;f(tk),M(tk)>h, k=0, 1, 2, ... n (14) where ¢*=

k= Sovi _ 0.,y (20N %0y pk _ _
Q(tk); Q= (p(tk), (aq) = By (tk), 9> = g2 (tk),M = M(tk), tk = tO + kh, h = At. Here,

2
f <q(tk), (p(tk),Z—Z (tk),sz (t), M(tk)> is a vector function, h is step of integration. Further, we define

the required partial derivatives

d¢i Gu(tr) 9%g; Pu(te) . .

a—q_(tk) = 1) 907 (ty) = 400 i=1.,n—mj=n—-m+1,..,n.

We formulate this result in the form

Theorem 2. The solution of a system of differential-algebraic equations is found from the system of
linear equations (10-12), (14).

Note 3. The accuracy of the solution of the system (1-3) (DAE) can be improved by representing the

2
vector function f<q(tk),(p(tk),z—(:(tk),sz(tk),M(tk)> in system (14) on the basis of Runge-Kutta

numerical methods[65].

The kinetostatic method for the mechanism of class IV. The proposed method of kinematic
calculating and method of kinetostatics based on D’Alembert’s principle is put as the basis for the
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mechanism force calculation. The results of the study of the force parameters serve as the basis for the
calculation of the strength and stiffness of the mechanism of class IV. Without loss of generality we
assume /s—=0. Kinematic scheme of power analysis for the mechanism of class IV is shown in Figure 2.
Task 2. Define the reaction forces in the joints 4, B, C, D and E of the mechanism of class IV under
the influence of external moment M.
Using the method of calculation of the kinematic parameters [5], the coordinates of these joints are
defined by:

x,=1l;cosps, y, =Ilssings, x, =l cosp, +/,cosp,, y,=I[sing,+/ sing,,
Xc =lscos s + 11* cos(@, — ), Ve = Issing; + 11* sin(, — ),
xp, =1;cosps +1, cosp, +1,cosp,, v, =I[;sing;+/ sing, +1,singp,,
x, =l,cosps+1 cos(p, —ay) +1,cosp,, vy, =Ilssin@,+[ sin(@, —a,)+1,sing,.
We define the coordinates of the point of intersection H of the lines in figure 2, passing through the
points D, Band H, F, C and H, A and H
Ax+By+C, =0, i=123
where
A==(Vp=yp), Bi=xp—X5  C =(yp—yp)x5 = ¥u(xp = %), 4 =~(Ve = Vo)
B, =xp—xc, C=(Vp—Y)%p—Ye(¥e —X), A =—(Vi=Yu) By=x,-%4,

Cs = Wa =Yy )X, = ya(X, =Xy, X, :M’ Vy _ Sy~
Ale _AZBI Ale _AZBI

We form the equation of balance of the base link 1 by equating the sum of the forces acting on this
link:

F+F+F,=0
The vector equation of equilibrium of the force is decomposed into two components in the
projections on the axis of the fixed system of coordinates:

Ficosp, +F,cose, + I, cos f=0,
Fising, + F,sing, + F;sin f=0,

where

A3
P=arctg(— B—).

S X

Figure 2 — Kinetostatic analysis for the mechanism of class [V
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The reaction forces E,Eand }73 in the joints A, B, and C of the base link 1 are arisen due to the
action of constant moment M on output link 3 with fixed (input) link 5. Acting on output link 3 the
moment is M =B/, +P21; . Here, [, and l; are the length of the vectors of base link 3. According to the

plan of force we determine (see Fig.2.):

P =1F] cos(90° + @, —¢3)

P, =F,cos(90" + @, + ax; — ).
Substituting the last formula in scalar equations (17), we obtain a system of equations to determine
the reaction forces /1, 2 and ['3:
Ficosp, +F,cosp, +F,cos f =0
Fising, + F,sing, + F;sinf =0

LF, cos(90° + @, — @) + I,F, cos(90° + @, +a, —,) =M

In conclusion, it should be noted that a method, an algorithm and a program for determining reaction
forces in the kinematic pairs of the mechanism of class IV have been developed based on the proposed
method of power analysis.

Discussion of results. Power analysis makes it possible to calculate the strength of the mechanism of
class IV parameters and to select the power for the desired drive unit. Thus, a fresh approach to make a
simultancous solution of kinematic, kinetostatic and dynamic problems of the mechanism of class IV is
offered. The obtained results are easy to apply to mechanisms of high class with a larger number of closed
contours. The importance of the fundamental scientific result presenting in brief the theory of mechanisms
of high class lies in its practical application. The question always arises: how to use the theory actually
proposed in a compressed form, and the unique properties of these mechanisms in the design of new
devices and machines.

For the first time the programs on the Delphi’s language calculate position and reaction force in the
mechanism of class IV with any desired accuracy. The results of program on the position of links and
reaction forces in the joints for the mechanism of class IV. Initial data: Ly =10cm, L; =2cm, L] =2cm, L,
=8268cm, L; =5cm, L =5cm, L, =59133cm, Lg =4ecm,Lg¢ =0, a; =60°, az =30°, @, =0,
£ = 0,001, @cin =70, Psmax =105", @amin =70°, @3mazx =100°, h =0,05°, ¢<=0,01rad/s. The program
defines values of the angular coordinates of all remaining links at the possible ranges of variation @3,
=70" < @3 < Q3max =100", Psmin = 70° < @ < Psimar =103". Separately we give the initial values of
the angular coordinate of input link 5 @5 =90,0499999999989" and of output link3
©3=90,0499999999989° in accordance with which the movement of the mechanism starts. If we change
the angular coordinate @5 of input link 5 90,0499999999989" to 90,2499999999988"

The positions and forces are listed in tables land 2.

Table 1 — Angular coordinate of links for mechanism of class [V

P1 P2 P3 Pa Ps
30.151212399452 -0.031675872130 90.0499999999989 12.928351949062 90.0499999999989
30.153170114784 -0.032123943447 90.0999999999989 12.907880756584 90.0999999999989
30.155201340299 -0.032593556243 90.1499999999989 12.887379206970 90.1499999999989
30.155693019626 -0.032636365534 90.1499999999989 12.879818673972 90.1999999999989
30.157800302286 -0.033107168760 90.1999999999989 12.859325664381 90.2499999999988

Table 2 — Reaction forces in the joints for mechanism of class [V
fr1] f1[2] fr[3]
0,085501549459072 -0,0179259921115466 0,0241681781581009
0,0853804108253469 -0,0179268654072137 0,024138568162871
0,0852599951693558 -0,0179278751364108 0,0241091893026834
0,0852777526589473 -0,0179964249228941 0,0241643846455302
0,0852777526589473 -0,0179974850000152 0,0241350541017292
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These mechanisms can be used in the design of robots and cranes with high lifting capacity,
mechanisms of departure chassis of a fighter aircraft landing at high speed on aircraft carriers, heavy
transport and passenger aircrafts landing on the airfield, presses and hydraulic hammers at a significant
rate of working body movements, and etc.

During landing of heavy airplanes on an airfield and of a fighter aircraft on an aircraft carrier at the
moment of wheel contact with bearing surface there is an instantancous force (instant impact) on the
mechanism of chassis, and a difficult task is to keep the load by drive with minimum power. To prevent
damage it is necessary to provide a minimum of reaction forces in the joints of the mechanism of chassis.
This is possible if the chassis design on the basis of the mechanism of class [V.

From numerical results it is evident that a wheel can be attached to the joints E or D, as well as joints
O and K to housing of an aircraft (Figure 2). Reaction forces in the joints D, E and of output link 3 are
equal to fr[1] = 0,177489607188975 fr[2] = 0.0235637144272305 respectively, and balancing force is
generated by the drive fr[3] = - 0.200247062147046 for input link 5. It should be noted that reaction forces
in joints are reduced 5 or more times as compared with the influence of instantancous maximum power
M =1 at a wheel contact point.

The latter fact allows increasing the bearing capacity and the service life of a new mechanism of
chassis and the range of speed change at landing. Thus, we provide a higher degree of safety of an aircraft.

Conclusion. For the first time we make the following conclusions:

- a new direction is suggested in simultaneous calculation of kinematics, kinetostatics and dynamics
of mechanisms of high class on the basis of the theory of differential equations and approximation theory;

- methods and algorithms for determining the position of links and reaction forces in the joints of the
mechanism of IV class are developed;

- a program for calculation of kinetostatic and dynamic parameters in the mechanism of class IV with
any given accuracy is written;

- the use of mechanism of class IV in the design of a new chassis in aircrafts and mechanisms of
departure chassis of a fighter aircraft landing on aircraft carriers at high speed, heavy transport and
passenger aircrafts landing on the airfield and the mechanism of the auto crane’s boom outreach having a
heavy payload as well as for movable operating elements of the hammer’s actuating units and for high
speed presses is mathematically justified.

This ensures minimum of reaction forces in the joints of these mechanisms and minimum of
balancing power to select the required drive with low power.
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b. Cunues', A.M. Myxanosa’

X anbIKapabIK aKNapaTThIK TEXHOJIOTHAIAP YHUBEPCHTETI, Amvarsl, KasakcTano
*ATIMATHI TEXHOOTHATIBIK YHHBEPCHTETI, Amvarsr, KasakcTan

BIPETEM MEXAHU3MIEPAI )KOHE MAIIIMHAJIAPABI )KOBAJIAY. II

Annoramus. JKama mexaHm3Mzaep MEH MAINMHANAPABI jKacay VINIH TOMCHTI CBHIHBIT MEXaHH3MACPIHEH
(IT kmacc) >xorapel kiaacTel MexanmsMaepre (IV xoHE oxaH KOFapHl KIAcC) KOmIy apKbUIBI TYOCTCHITI CCpILIiC
skacayra Oonansl. KMHEMATHKANBIK, KHHOCTATHKAIBIK >KOHE JAWHAMHKAIBIK MOCENeNepAl Imemyre OarbITTaiFaH
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JKOFApBl TOpEKeNl MEXaHU3MJCP YINIH >KYBIKTAY TCOPWSCHI HETI3IHAC TYHFBII PET XKAaHA TYKBIPIMAAMA YChI-
HeU1anbl. ChHBMTHIH [V TeTiri ymiH tomcanapaa OaiIaHBICTAP MEH PEAKUMSUIBIK KYLITCPAIH OPHANACYBIH AHBIK-
TayIBIH QMICTCPi, aNTOPUTMICPI JKOHE OarmapraManapsl d3ipiacHIl. CaHIBIK 3KCIICPHMCHT, VIIKCH OTKI3y KaOinmeTi,
COH/AaH-aK >KOFAphl KbLIIAMIBIKTHI THAPABINKAIBIK OalFaMeH KOHE Oacmace3 OaKpLIay KYPBHUFBLIAPABIH JKYMBIC
OPTaHJAPBIHBIH YIIIH POOOT KOJBIH jKOHE OyM JIM(T KPaH MEXAaHH3MICPIH YIIAKTHIH XKAHA IMACCHIH AAMBITY YIIiH
knacc IV MexaHm3Mi YIKEH apTHIKOIBLIBFBI KopceTTi. COHBIMEH KaTap, 0CHl MEXAHU3MACPIIH 1IMEKTEPIHACTI peaK-
IISUIBIK KYIITEPAIH MUHHMATIBI MOHI, COHIAM-aK KyaTThl TOMEH KyaTTaHIBIPYIbl TAHJAY YIIH €H a3 TEHACCTIPY
KYIII KapacTHIPHLIFaH.
Tyiiin ce3aep: KHHETOCTATHKA, THHAMUKA, YKOFAPBI AIPEKET MEXaHN3M, MAIIHHA 5Kacay, pOOOTOTEXHHKA.

B. Cunues’, A. M. Myxanopa®

"Meskay Hapo THBIH YHHBEPCHTET HH(OPMAIMOHHBIX TEXHONOTHI, AmMatsl, KajaxcTam,
ATMaTHHCKHH TEXHOJIOTHUCCKUH yHUBEpcHTET, AnMartsl, Kazaxcran

MNPOEKTUPOBAHUE YHUKAJIbBHbBIX MEXAHU3MOB U MAIIHH. IT

Annotanmmsi. KapruHansHsI POPBIB BOBMOKEH IPH IIEPEX0AC OT MEXaHW3MOB HH3IIETro kimacca (kiacc II) k
MCXAaHHU3MAM BBICOKOTO Kiacca (kmace [V u Beime) aag pa3paboTKH HOBBIX MCXAHH3MOB H MAIWH. BriepBeic mpe-
JO’KCHA HOBAsS KOHICIIMSA, OCHOBAHHAS HA TCOPHM NPHOMIPKCHHH 11 MEXaHH3MOB BBICOKOTO KIIACCA, HAMPAB-
JCHHBIX HA PCHICHHC KUHCMATHYCCKHUX, KHHCTOCTATHYCCKHX H AHHAMHYCCKHX 3aaadt. P33p360TaHI>I MCTOAOBI,
AITOPUTMBI U MPOTPaMMBbI IJIA ONMPCACTICHUA MOJIOXKCHUH 3BCHBCB M CHII peamnﬁ B MIApHHUPAX LI MCXaHU3MaA
knacca IV ¢ mo6oit TouHOCTHI0. UHCICHHBIH 3KCHEPHMEHT ITPOJECMOHCTPHPOBATI OIPOMHOE IMPEHMYIIECTBO MEXa-
Hu3Ma 1V kmacca amst pazpaboTKH HOBOTO MEXaHM3MA INACCH CAMOJIETA, MEXaHM3Ma PYKH POOOTOB M IOIBEMA
CTpEJIbI aBTOKPaHA C OONBHION TPY30IOABEMHOCTBIO, 4 TAKXKE T YCTPOICTB YIPABJICHHUI PAOOYMMHI OPTaHAMHE C
BBICOKHMH CKOPOCTAMH LI THAPABIMICCKUX MOJIOTKOB H IPECCOB. B 10 xe BpeMA 00CCIICUYHBACTCS MHHHMAIBHOC
3HAYCHHUE CHUI PEaKIMH B MIAPHHUPAX 3THX MEXAHM3MOB, 4 TAKKEC MHHHMAIbHAS YPABHOBCIIMBAIOINAS CHIA LI
BBIOOpA TPeOyEeMOTo MPHBOJA C MAJIOH MOIIHOCTBIO.

KimoueBbie c/I0Ba: KMHETOCTAaTHKA, AWHAMHKA, MEXAaHH3M BBICOKOTO KIIACCA, MAMIMHOCTPOCHHE, POOOTO-
TCXHHKA.
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