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COMPUTER MODELING OF CREEP
FOR HEREDITARY MATERIALS BY ABEL’S KERNEL

Abstract. The work is devoted to the computer modeling of creep procedure for hereditary materials. Creep
procedure is described by nonlinear integral equation of Yu. N. Rabotnov, and creep kernel is represented by Abel’s
kernel. New efficient method has been proposed for determining of parameters (o, 6) for Abel’s kernel. Bisection
method is used for obtaining of parameter . Algorithm and relevant software have been developed for calculating of
parameters o 1 0.

Efficient methods and relevant software have been developed for calculation of values of instantancous strain
and creep strain for hereditary materials. High accuracy of modeling of creep procedure has been shown by means of
developed methods and software based on materials Nylon 6 and glass-reinforced plastic TC 8/3-250.
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1. INTRODUCTION. It is known that many natural and artificial materials under load action show
their viscoelastic properties. Currently there are sufficiently developed experimental methods for evalua-
tion of viscoelastic characteristics of materials, as well as theoretical methods for their description [1-3].

One of simple, but efficient means for description of hereditary materials deformation was proposed
in 1948 by Yu.N. Rabotnov [4]. It was based on similarity of isochronous creep curves of materials.
Meanwhile the process of creep strain is described by the equation of Boltzmann-Volterra for linear
viscoelastic materials [5], but strain in the left part of the equation has been replaced by the so called
“curve of instantancous deformation”, which is determined experimentally.

It is known that the selection of kernel of the integral equation and determination of its parameters is
one of the most responsible actions in description of mechanical behavior of viscoelastic materials. In the
works [6-11] Rabotnov’s fractional exponential kernel and Abel’s kernel have been used for description of
creep procedure of various materials.

In Kazakhstan complex experimental and theoretical research for deformation and strength of asphalt
concretes is carried out [9-20]. The current paper is continuation of the above works and it considers the
matters of computer modeling for creep procedure of hereditary materials using nonlinear integral
equation of Yu. N. Rabotnov with Abel’s kernel.

2. NONLINEAR CREEP.

2.1. Nonlinear equation of creep. Considering similarity property of isochronous creep curves, Yu.
N. Rabotnov proposed the following nonlinear integral equation to describe the process of nonlinear
deformation of hereditary materials [4, 21-23]:

ole)]=0()+ [K(1—-7) o(z) dr, )

where €(f) — is strain at time moment t, O (1) - is stress at time moment t, O () - is stress at time
moment 7; K (f — 7) — is creep kernel; 7 — is observation time; T — time preceding observation time t.
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Expression ¢[8(l)] in the left part of integral equation (1) represents by itself the so-called “instan-

taneous deformation curve™.
2.2. Rabotnov’s kernel. Creep kernel of integral equation (1) is described by Rabotnov’s fractional
exponential function [21-23]:

w (A (4 (-
K(t=7)= 20 (B 1-1) = At-7)" 3 (Ff()l —(fx)(?+ m]’ ¥

where 3 _(=f,t—1)— is Rabotnov’s fractional exponential function; %, a, B are creep kernel parameters
(3>0, 0< o<1, B>0); I'() is gamma-function.

Inserting expression for creep kernel (2) into integral equation (1), and considering ¢ = const at creep,
we obtain:

B ©(—p)" f=aten)
plew]=o|1+22, I[a—a)i+m+1]| )

2.3. Abel’s kernel. Practically always one can accept that a relationship between stress and strain in
materials is a linear one at small stresses. Therefore for determination of creep parameters one can use
creep curve of a material at small stress and apply linear viscoelasticity approach [6].

As it is known creep curves of materials depending on stress level and temperature can have two or
three characteristic strain sites [7-9]: site I with unstabilized creep, site II with stabilized creep and site 111
of accelerating creep.

Then the method is proposed, according to which for determination of creep parameters of a material
a, & and & it will be sufficient to consider only site I of creep curve.

Having accepted n=0, from equation (3) we will obtain:

ot
go[g(t)]za{1+ (1_0{)}. 4)

One can see that the right part of the obtained equation contains a well-known Abel’s function with
unknown parameters o and d.

Having divided both parts of the equation (4) into instantaneous elasticity modulus £, for the case of
linear deformed matenal, we will obtain:

g(t)=¢, {l +1Lt(1“) } ()

where & is instantaneous strain.

2.4. Abel’s kernel parameters. Equation (5) contains three unknown parameters ¢y, o and 6. As it has
been said above, in the right part it contains known Abel’s function with parameter of singularity a, which
has the value within the interval (0, 1). In the works [7, 9-11] it was proposed to consider the parameter a
as known and to determine the unknown parameters €, and & with the use of least square method.
According to the least square method the values of parameters &, and 6 should meet the following
condition:

2
S(e,,6) = Z { g, [1 + % Zi(la)J_ gel_:| — min, (6)
i=1 -

where S(&,,0) is sum of squares of deviations; &, are values of creep strain determined expe-
rimentally; 7 is number of creep strains.

08(g,,9) 0S(g,,90)
O gy —

oz, o5 =0 one can find expressions

From the following two partial derivatives

for determining the parameters €, and 6:
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)

Selecting sequentially the values for parameter a from interval (0, 1) with specific step, from equation

(7) we can find the values for parameter €, = & (Q') . Inserting the obtained values for parameter &, and
corresponding values for parameter of singularity o into expression (8), we can determine the values for
parameter 0=0 (50: Q’) )

Then sequentially inserting the obtained values for parameters «, €y and 6 into equation (5), we can
calculate the values for creep strain & (t)=¢ (t,a,¢&,,0).

Calculating under the formula

Agl_ :81- (Zi’ C{, 807 5)_8ei(li)-100% (9)
gei(li)

the deviations of the calculated values for creep strain from those obtained experimentally, one can select
optimum values for parameters a, &, and J, providing the least value of Ae;.

3. ANEW METHOD FOR DETERMINING OF ABEL’S KERNEL PARAMETERS.

3.1. Modified equations. The analysis of numerous experimental and calculated results [11] has

shown that model &, and experimental &, instantaneous strains practically always coincide with high
accuracy. Therefore further we accept that

£y ~ & (10)
Considering equation (10) the expressions (7) and (8) can be represented in the form of:

"

Sk () 3200 2300 S (1) 0
=1 = =1

i=1

g n 2
2(1-ea) (1-a)
my 279 -1,
i=1 i=1

1- =0

: (11)

"

DI [AGHES A
5=~ S (12)
— N
l-a i=1 l

In the expressions (11) and (12) k(1) represents by itself the so called experimental rheological
parameter [11], determined under formula:

g, (1)
k (1)y===
() T (13)
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where &, (1) is value of creep strain at time moment /, determined experimentally; 85 1s instantancous

strain at time moment /=0, determined experimentally.

Experimental rheological parameter £,(f) represents by itself normalized time function in relation to
experimental instantaneous strain. It has the value equal to 1 at /=0 and more than 1 at time values of >0.
It shows in how many times the experimental values of creep strain are more at different time values
compared with instantaneous strain, which has been also obtained experimentally.

3.2. Bisection method. As it is seen, expression (11) contains only one unknown parameter a. From
the mathematical point of view the unknown parameter a is root of equation (11) and to obtain o one can
use one of approximate methods. In our case bisection method (method of dichotomy, half division) is
used [24].

It is known in advance that parameter of creep kemel o has the value in the interval (0.1) [21-23]. The
essence of the bisection method is in the fact that a segment where the root is being found is divided in
half, and the half is taken on the ends of which the function has the value of opposite signs as before.

We will write the expression in the following form:

ike (ti) i[f(l*a) - iri(lia) ike (l‘i)ti(lio{)
f(a) . 1_ i=1 i=1 - i=1 - i=1 > )
2 | N 0w
S-S

i=1

(14)

Then the procedure for calculating of value for parameter @ can be performed under the following
algorithm:

1. Inserting of values for time #,, for the experimental values of creep strain ¢; and given accuracy & .
2. To choose segment |a, ] in the interval o € (0.1).
3. Calculating of the center of the segment [a, #] under formula:

c_a+b s
= (15)

4. Calculating of value for function f{a) at a =c, i.¢. f{c).
5. Check-up of condition:

fle)<e. (16)

6. If condition (15) is true, then the central value ¢ of the segment [a, b] is accepted as the value of
parameter a. If not, the segment [a, 4] is divided into halves and for further calculations we take one from
two halves, on the ends of which the function f{fa) has values of opposite signs, and calculations are
performed again from 3.

7. As soon as the value of parameter o is found, the value of parameter J is calculated under ex-
pression (12).

Figure 1 represents block diagram of the software, performing the calculation procedure for values of
creep kernel parameter o under the abovementioned algorithm.

4. CALCULATION OF MODEL CREEP CURVE.

4.1. Short calculation method. Using approach developed in the authors™ work [11], one can
determine model (theoretical, calculated) values for creep strain in the following sequence:

1. Calculation of values for model rheological parameter £,,(¢) under formula:

g i
km(t):l+l—-t(1 >. (17)

2. Determination of instantaneous strain at stresses o

531(0)=i i L), (18)

m - km (tz)
3. Calculation of model values for creep strain at stresses o
£,(1)= &0 (o) k,(1). (19)
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Figure 1 — Block diagram

4.2. Examples.

4.2.1. Material Nylon 6. The works [25, 26] contain test results for material Nylon 6 at stresses 5, 10
and 15 MPa. For all stresses the duration of experiment was 100 hours. Creep strain values for material
Nylon 6 at the above stresses obtained by processing of experimental results are represented in table 1.

Table 1 — Creep strain values for material Nylon 6

Time t, Strain &, (t), %, at stress 6, MPa

h 5 10 15

0 0.1537 0.3873 0.6650

1 0.4200 1.0585 1.8174
20 0.5321 1.3408 2.3022
40 0.5621 1.4164 24319
60 0.5804 1.4624 2.5110
80 0.5937 1.4961 2.5689
100 0.6043 1.5229 2.6148

By calculating under the developed software the following values for parameter of creep kernel have
been determined: o = 0.8860; 6 = 0.1984.

Figure 2 shows the values of experimental rheological parameter and the graph of model rheological
parameter. As it is seen, experimental and model rheological parameters coincide with high accuracy.
Maximal deviation is equal to 0.26%.

Experimental and calculated values for creep strain of the material Nylon 6 at three stresses are
shown in figure 3. It is clearly seen that the degree of coincidence for calculated strains with experimental
ones is high.
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Figure 2 — Experimental and model rheological parameters of material Nylon 6
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Figure 3 — Creep curves of material Nylon 6 at various stresses: 1-5 MPa; 2-10 MPA; 3-15 MPA

4.2.2. Glass-reinforced plastic TC 8/3-250. In the work [27] samples of glass-reinforced plastic TC
8/3-250 have been tested for creep at the temperature of 23.5 + 2°C. As glass-reinforced plastic is an
anisotropic material the samples have been cut perpendicularly to textile warp (O = 0°), along textile warp
(6 =90°) and at an angle of (O = 45°) to textile warp.

Experimental values for creep strain of glass-reinforced plastic at various stresses are given in tab-
les 2—4.

Table 2 —Creep strain values of glass-reinforced plastic (© = 0°)

Time t, Strain e4(t), %, at stress 6, MPa

h 40.1 80.2 120.3 160.4 200.5 240.6

0 0.1822 0.3855 0.6140 0.8987 1.2111 1.5219

1 0.1948 04121 0.6564 0.9608 1.2948 1.6271
100 0.2051 0.4339 0.6911 1.0116 1.3632 1.7131
200 0.2068 04375 0.6968 1.0199 1.3745 1.7272
400 0.2085 04411 0.7026 1.0284 1.3859 1.7415
600 0.2095 0.4433 0.7060 1.0334 1.3926 1.7500
800 0.2102 0.4447 0.7083 1.0367 1.3971 1.7557
1000 0.2107 0.4458 0.7100 1.0392 1.4004 1.7598
1368 02115 0.4474 0.7127 1.0431 1.4057 1.7665
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Table 3 — Creep strain values of glass-reinforced plastic (O = 45°)

Time t, Strain &, (t), %, t stress 6, MPa
h 20.3 40.6 60.9 81.2 101.5 121.8
0 0.1074 0.1946 0.5805 1.3624 2.4430 3.9262
1 0.1302 0.2359 0.7037 1.6515 2.9614 47593
50 0.1457 0.2639 0.7873 1.8478 3.3134 5.3251
200 0.1518 0.2750 0.8204 1.9255 3.4527 5.5489
400 0.1548 0.2806 0.8370 1.9643 3.5222 5.6608
600 0.1566 0.2838 0.8466 1.9869 3.5629 5.7260
800 0.1579 0.2861 0.8533 2.0027 3.5912 5.7715
1000 0.1588 0.2878 0.8586 2.0150 3.6132 5.8068
1320 0.1600 0.2900 0.8649 2.0300 3.6401 5.8500
Table 4 — Creep strain values of glass-reinforced plastic (© = 90°)
Time t, Strain &, (t), %, at stress 6, MPa
h 104.7 209.4 2792 349.0
0 0.3478 0.6957 0.9276 1.1595
1 0.3616 0.7232 0.9643 1.2054
10 0.3668 0.7337 0.9782 1.2228
50 0.3709 0.7419 0.9892 1.2365
100 0.3728 0.7457 0.9942 1.2428
200 0.3746 0.7493 0.9991 1.2489
300 0.3757 0.7515 1.0020 1.2525
400 0.3765 0.7530 1.0040 1.2550
500 0.3771 0.7542 1.0056 1.2570

Parameters of creep kernel have the following values:

O =0° a=0.8863; 6=0.0082,

O =45° 0= 0.8874; 6 =0.0250,

O =90° o= 0.8825; 6=10.0048.

Values of experimental rheological parameter and graphs of model rheological parameter are
represented in figures 4—-6. And the figures 7-9 show experimental and calculated values of creep strain of
glass-reinforced plastic.

b2

0 200 400 600 800 1000 1200 1400
Time t,h
—ke(t) —okm(l)

Figure 4 — Experimental and model rheological parameters of glass-reinforced plastic TC 8/3-250 (© = 0°)
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Figure 5 — Experimental and model rheological parameters of glass-reinforced plastic TC 8/3-250 (© = 45°)
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Figure 6 — Experimental and model rheological parameters of glass-reinforced plastic TC 8/3-250 (© = 90°)
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Figure 7 — Creep curves of glass-reinforced plastic TC 8/3-250 (© = 0°)
at various stresses: 1 —40.1 MPA; 2 — 80.2 MPa; 3 — 120.3 MPa; 4 — 160.4 MPa; 5 — 200.5 MPa; 6 — 240.6 MPa
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Figure 8 — Creep curves of glass-reinforced plastic TC TC 8/3-250 (© = 45°) at various stresses:
1-20.3 MPa; 2 — 40.6 MPa; 3 — 60.9 MPa; 4 — 81.2 MPa; 5 - 101.5 MPa; 6 — 121.8 MPa
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Figure 9 — Creep curves of glass-reinforced plastic TC 8/3-250 (© = 90°) at various stresses:
1 -104.7 MPa; 2 —209.4 MPa; 3 — 279.2 MPa; 4 — 349.0 MPa

Analysis of the constructed graphs shows that calculated curves coincide with relevant experimental
data with high accuracy. Maximal deviation of model rheological parameter from an experimental one is
0.84%.

Thus, the abovementioned examples have shown that the developed methods and software allow
determining of parameters for Abel’s kemel, values of instantancous strain and creep strain for hereditary
materials with high accuracy.

Conclusion.

1. A new efficient method for determining of parameters (o, J) for Abel’s kemel has been proposed
for description of hereditary materials creep by Yu. N. Rabotnov’s nonlinear integral equation. Bisection
method is used to obtain parameter a.

2. Algorithm and relevant software have been developed for calculating of values for parameters of
creep a u o with high accuracy.

— 7] ——
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3. An efficient method and relevant software have been developed for calculation of values for
instantaneous strain and creep strain of hereditary materials.

4. High accuracy of creep procedure modeling has been shown on the examples of materials Nylon 6
and glass-reinforced plastic TC 8/3-250, which is provided by the developed method and relevant
software.
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9. Bl BIckakGaes', b. b. Tearaes?, I. M. EnceGaesa’, K. C. KyTMMOB1

'On-Dapabu arsmmars: Kasak yarTeik yEuBepcnTeti, Amvarsl, Kasakcran,
*Ka3aKCTaH KO0 FhUIBIMH-3PTTCY HHCTHTYThI, Amvarsl, KasakcTan

MYPAJBI MATEPHAJIJAP/ABIH KbLIKBIMAJIBLIBIF BIH
ABEJIb O3EI'TMEH KOMIIBIOTEPJIK MOJAEJBJAEY

AnnoTtamust. XKyMpIC Mypanbsl MarepHaIIapIbIH KbUDKBIMANBIIBIK YACPICIH KOMITBIOTEPIIK MOJCIBACYTE
apragrad. JXeupkeMambeLTelk yaepici FO. H. PaGOTHOBTBIH CBI3BIKTHI €MCSC HHTCTPANIABIK TCHACYIMCH, >KBDKBIMA-
TBUTBIK ©3¢Ti AOesb 93eTiMeH cumaTTanaasl. AOenpb e3€TiHiH mapaMeTpraepid (0, 6) aHBIKTAy IbIH >KaHA THIMIL omici
OCpiareH. o MApaMCTPiH AHBIKTAY YIIH OHMCCKITHA OAiCi MAHJANAHBLIAZABL O JKOHC O MApaMCTPIICPIH CaHAyIBIH
ANTOPUTMI YKOHC COUKEC KOMITBIOTSPIIK OaFIapIaMachl KACaFaH.

Mypansl MaTepHATIAPABIH, MMAPTTHI JE3AIK Ae(hOPMAIHMACH MEH >KbUDKBIMAIBLIBIK A¢(OPMALMACHH CaHAyFa
apHAJFaH THIMAL 9JIC TICH COMKEC KOMIBIOTEPIIK OaraapiaMa »kacanral. Nylon 6 sxone TC 8/3-250 msIHBIIIACTHK
MBICAIIIAPHI APKBLTHI JKACATFAH dJICTEP KOHE KOMITBIOTEPIIIK OaFraapIaMaiap KeMETiMEH *KbUDKBIMAIBLIBIK YACPIiCiH
MOJICTIBJICY AiH >KOFAPHI TANIri KOPCETIITeH.

Tyiiin ce3aep: >KUDKBIMATBUTBIK, AOCTb 3¢ri, OMCeKUMA 9iCi, MApTTHI JC3HIK AcopMarms, >KbILKbIMA-
JBUIBIK ¢ ()OPMALHACHL.

A. ! Mckax6aes', B. B. Teraes?, I. M. Ence6aesa’, K. C. KyTMMoB1

"Kasaxckuit HAMHOHALHBIH yHHBEPCUTET MM, amb-Papadu, Amvatsr, Kazaxcran,
*Ka3axCTAHCKHI JOPOIKHBIH HAYTHO-HCCIICI0BATEILCKII HHCTHTYT, AmMarsl, Kazaxctan

KOMIIBIOTEPHOE MOJAEJNHUPOBAHUE MNOJ3YYECTH
HACJIEACTBEHHBIX MATEPHAJIOB AIPOM ABEJIA

Annortamust. Pabora mocBsmeHa KOMIIBIOTEPHOMY MOJICIHPOBAHHIO IPOIECCA MOI3YUECTH HACICACTBEHHBIX
marepuanos. [Iporecc mom3ydecTn ONMMCHIBACTCS HEIMHEHHBIM HHTErpambHbIM ypaBHeHmeM 0. H. PabotHoBa, a
SATPO TOBYUSCTH MpeAcTaBIcHO sapoM AOems. [Ipeanmoskena HoBas 3()(EKTHBHAS METOOMKA OMPEICICHHSA Mapa-
MCTpOB (0, 0) sapa Adems. Jna HAXOKICHHUS MAPAMETPA oL HCIIOIB3YCTCI MeToA Oucekimmn. Pa3paboTaHbl anmropuT™M
H COOTBETCTBYIOIIAS KOMITBIOTEPHAS MPOTPAMMa A1 BEIMHUCIICHHS TAPAMETPOB O H 0.

Pazpaboransl 3((exkTuBHAST METOAWKA M COOTBETCTBYIOINAS KOMIBIOTCPHAS NMPOTPaMMa Uil BBIMHCICHUS
3HAYCHUH YCIIOBHOW MTHOBCHHOW aeopmarmm W aeopManyy IOI3YUESCTH HACICACTBEHHBIX MaTepHanos. Ha
mpuMmepax MartepuanoB Nylon 6 um creknommacrtuka TC 8/3-250 moka3aHa BBICOKAsS TOYHOCTh MOJCIHPOBAHHS
MIPOIIECCA MOI3YHUECTH C IIOMOIIBIO Pa3pabOTAHHBIX METOAHMK M KOMITBIOTCPHBIX IPOTPAMM.

KmodeBnie ¢JI0BA; TOI3YUCCTh, AAp0 AOCHa, METO OHCCKIMH, YCIOBHAS MTHOBCHHAA acdopmarms, aedop-
Ml TIOJI3YYECTH.
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