Aang Panji Permaka, Subagyo Pramumijoyo, Akmaluddin

1. Gorontalo State University, Gorontalo, Indonesia.
E-mail: aang@ung.ac.id, bagyo@ugm.ac.id, akmaluddin@gmail.com

UPLIFT RATE OF GORONTALO LIMESTONE (INDONESIA) BASED ON BIOSTRATIGRAPHY ANALYSIS

Abstract. The uplift rate of Gorontalo limestone is highly dependent on the completeness of age and depth data. All data needed can be obtained based on complete biostratigraphy analysis. The research material used was a 24 meter thick limestone outcrop. The aim of the research was to determine the absolute age of limestone, paleobathimetry and uplift rate of limestone in the research area. The three methods used consisting of the measured section (MS), biostratigraphy analysis and tectonic analysis. Bio datum in the limestone is only one, namely LO Globocquadrina dehiscens. Determination of paleobathimetry using two methods. The uplift rate of limestone is 0.0699-0.0724 mm/year.

Keywords: uplift rate, limestone, Gorontalo, biostratigraphy.

Introduction. The Indonesian archipelago is geologically the center of the meeting of three of world’s main active plates, the Indian-Australian Plate which moves north-northeast, the Pacific Ocean Plate moves west-northwest and the Eurasian Continent Plate is almost static [1-4].

Sulawesi Island, which is located in the central part of the Indonesian Archipelago resembles the letter K. This form is influenced by the movement of the three main plates of the world. Based on regional physiography, Sulawesi Island is divided into South Arm, Middle Part, North Arm, East Arm, Southeast Arm and Neck [4].

Gorontalo which is part of the North Arm of Sulawesi has very complex geological conditions due to tectonic influences. The spread of quarter age limestone in the Gorontalo plains and Pliocene-Pleistocene limestone around Lake Limbo to are evident. The effect of tectonics is very strong, especially from the position of reef limestone that is quarter age in the Gorontalo region. This reef limestone undergoes a very strong elevation, proven by field data near Gorontalo and the northern coast of Tanjung Duka [4-6].

The influence of tectonics on uplift rate limestone in Gorontalo has yet to be known how fast until now. This is inseparable from the data of limestone of Gorontalo that is regionally by dividing it into two large formations without knowing the absolute age and paleobathimetry so that the uplift rate of Gorontalo limestone is unknown. For this reason, based on the background, three main objectives of this research were raised, which are, to find out the absolute age of limestones, to know paleobathimetry and uplift rate of limestone.

Material and Method. The research location is in Yosonegoro region, Gorontalo Regency, which is the northern part of the Lake Limbo to basin with coordinates (00°39′6.7222″North, 122°54′50.0385″East) to (00°39′6.9397″ North, 122°54′57.5275″East) (figure 1). 24 meter high limestone outcrop research material. The research method carried out consisting of three methods namely the measured section (MS), biostratigraphy analysis and tectonic analysis. The MS method measures the detail of the coating using a Jacob’s staff at 1.5 meter intervals by systematic lithology sampling from the oldest to the youngest rocks [7, 8]. Biostratigraphy analysis using the Olympus SZ61 binocular microscope to identify the types of fossil planktonic and benthonic for a mini ferain determining the age of rocks and paleobathimetry [9-19]. Tectonic analysis to calculate the uplift rate based on absolute age data of limestone, paleobathimetry and current position of elevation [20-22].
Results and discussion. The measured section results at the research location helped to determine the thickness of one stratigraphy path way and determine the exact position of the sample for biostratigraphy analysis. A total of 10 samples that carried out biostratigraphy analysis based on facies obtained from measured section results. The samples taken certainly contain planktonic foraminifera fossils and bentonic based on grain size and the content of foraminifera fossils.

Biostratigraphy analysis in 10 limestone samples contained 17 types of planktonic foraminifera fossil. The distribution of 17 types of planktonic foraminifera fossil can be seen in figure 2. Based on figure 2, interpretation and analysis of the distribution of the biostratigraphy zone and the position of the bio datum in the stratigraphy path way can be done. The research location is divided into two biostratigraphy zones, with details as follows:

1. **Zone PL2**
 Definition: The upper boundary of PL2 zone is not found. The lower boundary is LO *Globoquadrina dehiscens*.
 Discussion: This zone is *Globoquadrina dehiscens* partial range zone. Zone PL2 (part) is equivalent to the zone PL2 [14] and zone N19 [23]. This zone represents the youngest planktonic foraminifera (top). LO *Globoquadrina dehiscens* [14, 24] were found in 3G samples. The contents of fossil association in this zone are *Globigerinoides desmniatus* (deLeroy), *Globigerinoides quadrirllobatus* (d'Orbigny), *Globigerinoides desruber* (d'Orbigny), *Globoquadrina dehiscens* (d'Orbigny), *Globigerinoides desquadriiferus* (Brady), *Globorotalia tenera* (Takayanagi and Saito), *Globorotalia plesiutumida* (Blow and Banner), *Pulminoidea precusor* (Banner and Blow) and *Pulleniatina obliquiloculata* (Parker and Jones). In this sample also found rework fossils in the form of *Globorotalia juanai* (Bermudez and Bolli) and *Globorotalia menardii* (d'Orbigny) in Parker, Jones and Brady). The presence of this species is estimated to be reworks originating from older rocks. The thickness of this zone is 13 meters (interval 11-24 meters).
 Age: Early Pliocene. ? – 5,80Ma.

2. **Zone PL1**
 Definition: The upper boundary is LO *Globoquadrina dehiscens*. The lower boundary is not found.
 Discussion: This zone is *Globoquadrina dehiscens* partial range zone. Zone PL1 is equivalent to the zone PL1 [14] and zone N18 [23]. The initial datum of this zone is not found. At the end of this zone is LO *Globoquadrina dehiscens* [14, 24]. LO *Globoquadrina dehiscens* was found in 3G samples. The presence of *Globoquadrina dehiscens* in samples of 3B, 3C, 3D, 3E, 3F and 3G. This species was not found in the samples above, namely 3H, 3I and 3J samples.
 The contents of fossil association in this zone are *Globigerinoides desmniatus* (deLeroy), *Globigerinoides quadrirllobatus* (d'Orbigny), *Globigerinoides desquadriiferus* (d'Orbigny), *Globigerinoides desruber*
(d’Orbigny), Globigerinoides depressus (Brady), Globigerinoides sublunatus (Bronnimann), Globorotalia acostaensis (Blow), Globorotalia humerosa (Takayanagi and Saito), Globorotalia tumidatunida (Brady), Hastigerina equilateralis (Brady), and Pullenia tinapracursor (Banner and Blow). In this sample also found rework fossil in the form of Globorotalia continuosa (Blow) and Globorotalia juanai (Bermudez and Bolli). The presence of this species is estimated to be reworks originating from older rocks. The thickness of this zone is 11 meters (interval 1 - 11 meters).

Age: Early Pliocene. 5.80 - ? Ma.

![Figure 2 - Distribution chart danhiozo nation planktonic foraminifera in research area](image)

Based on the division of two biostratigraphy zones, the position of the bio datum of LO Globorotalia dehiscens was found at a thickness of 11 meters, namely the 3G sample. Based on the classification of [14] the absolute age of LO Globorotalia dehiscens was 5.80 Ma (million years ago). After knowing the absolute age, the interpretation of the position of the elevation location of the study and paleobathymetry were interpreted in the 3G sample.
The elevation position of the research location is based on direct measurements using the Global Positioning System (GPS) which is 70 meters.

The Paleobathymetry of 3G sample based on biostratigraphy analysis refers to two methods, namely the method of [9] and the combined method of [11, 25]. The Paleobathymetry of 3G sample refers to the method of [9] using the calculation of the formula equation $D = e^{0.0065P + 1.25}$. D value is depth while P is the pelagic ratio. The requirement for using this formula equation is that the P value must be known from the comparison of the content of the number of fossils of planktonic and benthic foraminifera. The P value in sample 3G after being calculated is 75% so that the value of D or paleobathymetry can be known as 338.661 meters.

The Paleobathymetry of 3G sample refers to the method of [11] based on the overlay of benthic foraminifera fossil content. The fossil content of benthic foraminifera consists of *Fijinonionfijense* (Cushman and Edwards), *Gyrodinoidessoldani* (d'Orbigny), *Melonisaffinis* (Reuss), *Nonionfabum* (Fichtel and Moll), *Pararotaliaovemustia* (Brady), *Praglobulimina ovata* (d'Orbigny), *Rhobdammina discreta* (Brady) and *Saccorhizaramosa* (Brady). Based on the content of benthic foraminifera fossil, paleobathymetry is obtained in the upper lobe zone with a depth of 283.65-366 meters. The Paleobathymetry obtained is still in the range of depth, then the paleobathymetry correction curve [25] was used by looking for the middle value (median) obtained 324.825 meters.

Calculation of the uplift rate in the research area was carried out by comparing the total depth of the limestone since it was formed or deposited until this time divided by the absolute age of the limestone. The total depth value of the limestone summed the thickness of the bio datum position from MS result with the current elevation position and paleobathymetry. Calculation of limestone elevation using two data paleobathymetry namely the method of [9] and the combined method of [11, 25]. The results of calculating the limestone uplift can be seen in table.

<table>
<thead>
<tr>
<th>Method</th>
<th>Paleobathymetry</th>
<th>Elevation</th>
<th>Bio datum position</th>
<th>Uplift rate</th>
<th>Rate comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]</td>
<td>338.661</td>
<td>70</td>
<td>11</td>
<td>0.0724</td>
<td>1:1</td>
</tr>
<tr>
<td>[11, 25]</td>
<td>324.825</td>
<td>70</td>
<td>11</td>
<td>0.0699</td>
<td></td>
</tr>
</tbody>
</table>

Comparative analysis of the uplift rate of limestone using both methods produces almost the same results. Difference in the ratio of the two uplift rates if rounded 1: 1 or the uplift range 0.0699-0.0724 mm/year.

Conclusion. Biozonation of planktonic foraminifera in the research area consisted of two, namely PL1 Zone and PL 2 Zone with bio datum of LO *Globorugdinia desiccens*(5.80Ma) equivalent to the Early Pliocene. The depth of limestone was calculated based on the calculation of the total position of the bio datum of MS results with the current elevation position and paleobathymetry. Based on the data of absolute age and limestone depth since it was formed until it was elevated up to its current position, the uplift rate of limestone in the study are arranged from 0.0699-0.0724 mm/year.

Acknowledgement. I would like to thank Educational Fund Management Agency (LPDP) for helping me provide the educational scholarships through Indonesian lecturer main scholarship (BUDI DN).

Аанг Панджи Пермана1,2, Сабаджю Прзмамиджоу2, Акмалуддин2

1Горонтало демлексттик университет, Горонтало, Индонезия,
2Гаджа Мада университет, Джокьякарта, Индонезия

БИОСТРАТИГРАФИЯСЫН ТАЛДАУ НЕГЭНДЕ
ГОРОНТАЛО (ИНДОНЕЗИЯ) ЭКТАСЫНЫҢ КӨТЕРІЛУ ЖЫЛДАМДЫГЫ

9
Ааанг Панджи Пермана1,2, Сабаджоо Прэмамишджойо2, Акмалуддин2
1Государственный университет Горонтalo, Инженерно-геологический факультет, Горонтalo, Индонезия,
2Университет Гаджа Мада, Инженерно-геологический факультет, Джокьякарта, Индонезия

СКОРОСТЬ ПОДЬЕМА ИЗВЕСТНИКА ГОРОНТАЛО (ИНДОНЕЗИЯ) НА ОСНОВЕ АНАЛИЗА БИОСТРАТИГРАФИИ

Аннотация. Скорость подъема известняка Горонтalo очень сильно зависит от полноты и глубины данных. Все необходимые данные могут быть получены на основе полного анализа биостратиграфии. В качестве исследовательского материала использовался слой известняка толщиной 24 м. Целью исследования явилось определение абсолютного возраста известняка, палеобатиметрии и скорости поднятия известняка на исследуемой территории. Используются три метода, состоящие из измерительного разреза (ИР), биостратиграфического анализа и тектонического анализа. В качестве исходного био-уровня в известняке использовался только LO Globorquadrina dehiscentis. Определение палеобатиметрии проводилось с использованием двух методов. Скорость подъема известняка составила 0,0699-0,0724 мм/год.

Ключевые слова: скорость подъема, известняк, Горонтalo, биостратиграфия.

Information about authors:
Aang Panji Permana, Gorontalo State University, Geological Engineering Department, Gorontalo, Indonesia; Universitas Gadjah Mada, Geological Engineering Department, Yogyakarta, Indonesia; aang@ung.ac.id; https://orcid.org/0000-0002-6865-3564
Pramunayjoy Subagyo, Universitas Gadjah Mada, Geological Engineering Department, Yogyakarta, Indonesia; bagyo@ugm.ac.id; https://orcid.org/0000-0001-7524-1122
Akmaluddin, Universitas Gadjah Mada, Geological Engineering Department, Yogyakarta, Indonesia; akmaluddin@gmail.com

REFERENCES

[27] Ildar Valiev, Yury Koshlích, Massevaya D. Management innovations for enterprise development and effective decision making // Journal of Entrepreneurship Education. Vol. 21, Special Issue, 2018. ISSN: 1098-8394