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1 Introduction.

One of the methods for calculating manipulators of constructions lever mechanisms (LM) is the finite
element method (FEM). Here is given the original approach, which allows the use of the finite element
method for the analysis of stiffness and strength LM with kinematic pairs with arbitrary orientation in
space. The idea of the proposed method is that the basic equilibrium equation solved by the method rigid
of nodes in local coordinate systems. The basic algorithm FEM is not changed.

2 Types of rod constructions considered in FEM

Flat LM have kinematic pairs with mutually parallel axes, so their calculation on the stiffness and
strength of FEM can be applied [1-6]. For spatial LM - orientation kinematic pairs is arbitrary. Let as
consider the problem of accounting for such kinematic pairs in the calculation FEM - given the lack
connections between some elements of kinematic pairs. As is well known in the rotational pair - the
reaction torque is zero and of the slider - is zero reaction from its direction of motion. To account for the
missing component, i.€. in order to equate it to zero, it is necessary to consider the equilibrium equation
containing these components of the reaction. Obviously, such equations are the equations of equilibrium
in the projections on the axis kinematic pairs. But in the FEM basic system of equations is composed of
the equilibrium equations of nodes in projections on the axes of the global coordinate system (GCS).
Hence, GCS should be chosen so that its axis is parallel to the kinematic axis. But, GCS can not
simultanecously be all parallel to the axes of the kinematic pairs of a spatial mechanism.

Here we propose a method that allows to use the FEM for the analysis of any kinds of spatial LM
with arbitrarily oriented kinematic pairs. The basic ideas and scheme of FEM realization in this case
practically do not change. To make the missing components equate to zero it is necessary to consider the
vectors of reactions to the balance equation of kinematic pairs in projections onto axis containing these
components. To get these equations into each kinematic pair introduce local coordinate system (LCS) in
such a way that the axis of kinematic pair and LCS axis coincide [7]. Then the equilibrium equation
kinematic pair to the LCS this kinematic pair will include zero components of reactions. For example, if
the hinge axis or the axis of the slide — is not parallel to the axis of the GCS, the equilibrium equation
kinematic pairs in the projection on the axis GCS does not contain zero reaction components.
Consequently, the possibility of accounting the absence of these reaction components is lost. Therefore,
the FEM can always be used for flat LM since all kinematic pairs parallel to the some axis of GCS.

3 Simulation of kinematic pairs. Method of hard nodes

For the modeling of kinematic pairs it is used a method that was developed by the author [7]. It is
called the method of hard nodes - by analogy with [8]. In general, if the kinematic pair are connected "#"
the groups of rods (n>1). Each group consists of k,>1, i=1....n: rigidly connected rods. And for each

degree of freedom, these groups have their own kinematic and force parameters. Then any kinematic pair
is a combination of hard knots in one coordinate point and having " K" common degrees of freedom (" K™
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- class kinematic pairs). In other words, the kinematic pair is modeled not as a whole, as it is usually
modeled in the FEM for rod constructions, but as each element of the kinematic pair. Let as consider an
arbitrary spatial kinematic pair. Total number of degrees of freedom of its constituent units is equal to the
number of connections "K" imposed on it. That is the class of kinematic pair. Consider kinematic pairs
for which 3< K <5. Let us find degree of freedom W (in terms of FEM) kinematic pairs consisting of &
hard nodes. Obviously, this is the sum of common degrees of freedom and the additional degrees of
freedom of nodes: W =K -+k(6—K). Number N of degrees of freedom of the LM model are:

N=6n, +"Z‘”:( K. +k,(6-K,)—n,» Where ny - the number of hard nodes without kinematic pairs (single
i=1
nodes); 1, - the number of kinematic pairs; #,. - the number of degrees of freedom of the boundary

conditions; k, (i =1,...,n,,) - number of hard nodes included in the 7 —th kinetic pair; K, (i=1,...,7,,) -
7 —the grade kinematic pair.

Thus, in compiling the finite element model LM any 7 —the kinematic pair represents a combination
k, hard knots. It is located in one coordinate point and has K, common of degrees of freedom (class of

kinematic pair). Method of hard nodes has the following advantages over the known method of
accounting in the kinematic pairs FEM [10]:

) Possibility of accounting of complicated hinge connections, for which have can not be applied the
traditional methods of modeling. For example, the hinge between two or more base triangles;

) No need to transform the stiffness matrices of elements kinematically connected elements before
building a global SMS;

) Introduction to the number of unknowns of the problem is linearly dependent displacement
components of the kinematic pair.

4 Simulation of kinematic pairs. Types of kinematic pairs

Consider the scheme LM in some position. Position of the axis kinematic pairs with respect to GSC
OXYZ is known through comers «, [,y between the kinematic axis and the axes OX, OY, OZ,

respectively. Number of the kinematic axes depends on type of a kinematic pair. Translational, rotational
and cylindrical couples have only one axis "S", which coincides with the direction of the translational
motion or rotation axis. Spherical hinge with a finger has two axes "s" and *g,”. One coincides with the

axis of the finger and the other - with the line extending perpendicularly the slit of a finger. For each
kinematic pair LM is necessary to build LCS Oxyz. LSC single (non-paired) nodes and nodes spherical
pair can be selected in parallel GSC OXYZ because of an arbitrary orientation of degrees of freedom of
these nodes. For pairs class IV and V with one axis "S", the local axis Ox will direct along the axis "S".
Axis Oy, Oz is obtained from the condition that the triple Oxyz was right. For a spherical pair with a
finger we will direct the Ox-axis along the axis of the finger S, and the Oy-axis along the axis §,

extending perpendicularly the slit of a finger. Then the direction the axis Oz is uniquely determined.
Obviously, each pair is having a single common LSC. Information about the arrangement LSC of nodes
relative to GSC is obtained by using matrix of direction cosines. For kinematic pair also we give degrees
of freedom. That is for a pair you must specify the information - which are the degree of freedom nodes
are common, and what - kinematic. Table 1 shows the types of kinematic pairs used in the LM. There are
shown the orientation in space on their LCS, and also are shown the components of the reactions which
are absent.

Table 1 - Types of kinematic pairs

pair rotational translational cylindrical sphere with a finger
; E
unit 0 F i R X Ed L, "
designation ﬁ /ﬁ %
M, =0 = N, =0, M_=0 M_=0. M =0
zero efforts : N, =0 " * 0y
LCS ox — along the axis of | ox — along the | ox — along the axis of | ox — along the finger
rotation direction of the | rotation axis, oy — L slits
slide
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There was a software developed on the basis of a computer program STAP [7]. In this program there
was modified on input array ID, which is now formed as follows:

- If for j-th degree of freedom (j = 1, ..., 6) i-node imposed boundary condition, then ID(7 j)=-1

- If for the j-th degree of freedom of movement is possible, the ID (i, j) = 0.

- If the nodes i,1,,...,I, creates single kinematic pair, then:

is selected / = min{l'l,iz,...,ik }, (D)

D1, j)=0, Vj, )

IDG,, j)=1ID(,, j)=...=ID(i,, j) =1, if ] - common degree of freedom of the pair,
IDG,, j)=1D(i,, j) =...= ID(,, j) =0, if ] — the kinematic degrees of freedom.

That is, total j-th degree of freedom of the nodes belonging to the same kinematic pair, is described in
the ID array one zero in the j-th column and in a row, which corresponds to a node of the pair with the
minimum number /. For the rest of nodes kinematic pair in the j-th column is stored number /. Number /
shows that these nodes constitute a kinematic pair with the /-st node. Each row of the matrix ID is given
in the LCS corresponding node. That is, the elements of the i-th row describe the degree of freedom of the
/-st node in its LCS. Then when counting the number of global degrees of freedom and their the
numbering:

-"0" in the ID array successively replaced by the global degrees of freedom;

-"-1" 1s replaced with "0";

- and cach of an integer />0 in the j-th column is replaced by the ID(/ j), that is the global number
of j-th degree of freedom of i-th node already previously determined from (1,2). This procedure is simple
and can be written in the form:

1) Assignthe N=1.

2) Inthecycle fori=1, .. n,andj=1, .. 6:

1)) if ID (i, j) <O, then assign the ID (i, j) = O;

2))if ID (i, j) = O, then assign the ID (i, j) = N;

3)) if ID (1, j)> O, then assign the ID (1, j) = ID (ID (4, j). );
4)) assigned to N=N+ 1.

Thus, the type and class of a kinematic pair specified using ID. Suppose, for example, nodes 7 and j
constitute any kinematic pair and i <j. Then the the i-th row of the array ID willbe: [0 0 0 0 0 0 |.

Row “” is dependent on the type and class of the kinematic pair. We show a string array ID,
corresponding to the j-th node:
1. For the rotational pair (Class 5): [i 11 011 ], the 4th degree of freedom, ie, rotation around

the axis Ox LCS pair is the kinematic; and the remaining five degrees of freedom - common to i-th node.
2. For translational pair (Class 5): [O iii 1 i ], Ist degree of freedom, ie, translational motion

along Ox LCS pair is the kinematic; and the remaining five degrees of freedom - common to i-th node.

3. For a cylindrical pair (Grade 4): [O i1 011 ], kinematic are 1st degree of freedom, ie,
translational motion along Ox LCS pair and kinematic are 4th degree of freedom, ie, rotation around the
axis Ox LCS pair; while the remaining four degrees of freedom - common to i-th node.

4. For a spherical pair with a finger (Grade 4): i i i 0 0 i ], kinematic are 4th and 5th degrees
of freedom, ie, rotation around the axes Ox and Oy LCS pair; while the remaining four degrees of
freedom - common to i-node.

5. For a spherical pair (Grade 3): [i 110 00 ], the kinematic are 4th, 5th and 6th degree of
freedom, ie, rotation around the axes Ox, Oy and Oz LCS pair; remaining 3 - common to i-th node.

5 Conclusion

The paper gives a simulation methodology that allows the use of finite element method to analyze the
stiffness and strength of manipulators with kinematic pairs of an arbitrary orientation in space. The solution of the
basic equation of equilibrium finite element method proposed to be considered in the local coordinate system
nodes. It is shown the use of this simulation method with different spatial kinematic pairs.
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AnHoTammst. OOBEKTOM HCCIIEIOBAHUS SBIBIEOTCS MaHUITYJISTOPB Ha 0a3e PhUaXHbIX MeXaHU3MOB. llenpro paGoTel
SIBJISIETC ST M3TOYKEHNE METOIUKY pacueTa Ha KECTKOCTD, CYITHOCTD KOTOPOH 3aKiIiouaeTcs B cieayroneM. Kak M3BecTHO, OTUH U3
CaMBIX PacTIpOCTPaHEHHBIX METOJIOB pacteTa Ha IMPOYHOCTH U JKECTKOCTh MAHUITYISITOPOB SIBJISIETCS METO]T KOHEUHBIX AIIEMEHTOB
(MK9). B sr1oli paGoTe JaeTcs IOJXOJ, KOTOPBIA II03BOJISIET Hclonb3oBaTh MKD sl aHanmms3a KECTKOCTH U IPOUHOCTH
MaHUITyTSITOPOB ¢ KUHEMATHHIECKUMH TIapaMi MIPOU3BOIHHON OPHEHTAIMH B IPOCTPAHCTBE. PellleHrie OCHOBHOTO YpaBHEHUS
paBHOBECHST METO/la KOHEUHBIX SIEMEHTOB IIPH ATOM paccMaTpUBaeTcsl B MOKATHHBIX CHCTeMax KoOpauHaT y371oB. lloka3aHo
MpUMEHEHNE TIpeUIaraeMoro TOAXoJa JUIT MojeNel ¢ pasTuuHbIMA  IPOCTPAHCTBEHHBIMU KHHEMATHUIECKUMH TTapaMIL:
BpaITaTeIbHBIMU, TIOCTYNATETLHBIMY, TTTHHIPUISCKUMY, CQEePUISCKUMI, CHEPIISCKUMU C TIATbIleM. [[py 3ToM UCToNb3yeTcs
pa3paCoTaHHPIA paHee aBTOPaMHM METOJ >KECTKUX Y3MoB. Takke ULl UMCICHHOH peamusarum pazpaboTaHa KOMITHIOTEpHAs
nporpaMMa. B oTTHUMe OT MPOTOTHIIA, 3Ta MPorpaMMa MUMeeT HEKOTOpPBIE M3MEHEHWS, B TOM HHcIe BXoaHON MaccuB 1D,
TIO3BOILIIONHH B OJTHOM TOUKE Pa3MeIaTh HECKOILKO KOHEUHBIX IIEMEHTOB, IMEIOTX OOTIHE CBSI3H.

VK 621.01
A0 TTATJIATAHBIIT MAHHITYJISITOPJIAPABI ECENITEYAE KHHEMA TUKAJIBIK ITAPJIAP/IBI
MOJIEJBAEY

Temipdexon E.C.
AIIMATBI TEXHONOTHSIIHIK YHUBEPCUTET]

3eprTey 00BEKTICI MIHTIPEKTI MexXaHm3Mep 6a3zacklHAa MaHUITYISITOPIapAbI 3epTTey GONbIT TabhuTaubl. JKyMbIC MakcaThl
KaTaH/pIKKa ecelTey i o/liCiH KepceTy GOINbII TalbLIa bl benrii skariait GOMBIHITIA MaHUITY ISITOPIAP/IBIH KaTaHIbIKKA JKoHE
GepIKTIKKe ecenTey S/ICIHIH KeH TaparaH Typi OOJIBIT akbIPIBI BIIeMeHTTep aftici (ADO) ampmHagpl. KeHicTikTe epikTi Garmapiisl
KUHEMAaTUKAJIbIK TTapaibl MAHUITYILSITOPIIap/Ibl KaTaH/IBIKKA JKoHe OepikTikke Taijiay YIniH ADO maiinanaHajpl. bepinil oThIpraH
dJlicTeMEHIH WJESCHI, Telle-TeHIIK TeH/ICY1HIH HeT131 TapiapbIHbIH KaTbIIaHFaH KoopQuHaTalap KyieciHiH KaTaH TYWIHIePIHIH
amiciMen TrrenmreAl. KeHICTIKTerT KUHEeMaTWKAIBIK IapiapAblH ap TYpii: aifHaTMalbl, UITepiieMerNi, IMHAPT, cheparsl,
caycakThl ceparbl yITUIEpl YINH Kagamaap kepcerimreH. CoHbIMEH Gipre aBTOPIBIH albIH-ajla JKacalFaH KaTaH TYWIHep
onici xomjanpuraH. CaHJBIK —IalijlallaHy YIIH KOMIIBIOTEpIiK Oarjapiama sKacalraH. byl OarjapiaMaHBIH IIPOTOTHIITEH
e3remieniri, 6ip HykTere GipHeIle akKbIPIBI JTeMEHTTep chiiblcaThH 1D Kipy MaccuBiHe opTak, GaimaHpicTap Gap.
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