CONTENTS OF DIFFERENT FORMS OF NITROGEN, PHOSPHORUS AND SILICON IN THE WATER UNIT OF THE NORTH-EASTERN PART OF THE CASPIAN SEA

Abstract. This article discusses the results of geochemical studies of the north-eastern part of the Caspian Sea and the content of various forms of nitrogen, phosphorus and silicon in the water column of the north-eastern part of the Caspian Sea. The Caspian Sea occupies a special position in the economy of the Caspian littoral states and is of international importance from an environmental point of view in terms of maintaining the planet's biodiversity.

Changes in hydrometeorological conditions, which play a major role in the life of the Caspian Sea, are combined with the impact of economic activity on its ecosystem, one of which is pollution of the marine environment.

Oil production is developing intensively, and exploration and development work is continuing to detect new hydrocarbon deposits. Characteristic features of oil pollution are multiple sources, ingress into almost all environmental components, dispersal over large areas, accumulation in bottom sediments, etc. Soluble and heavy components — oil fractions in water masses easily absorb other toxicants, including toxic metals, and facilitate their migration. They worsen the quality of water, adversely affect the oxygen regime, disrupt the balanced bonds of the surface layers of water with the atmosphere, etc.

Keywords: hydrochemical and geochemical indicators, nitrogen, phosphorus, silicon, concentration.

The hydrochemical nature of the Caspian water is associated with its physical features. The distribution of hydrochemical elements fluctuates by season, and many-year fluctuations associated with sea level fluctuations are also observed. The largest oscillation amplitudes of hydrochemical elements are characteristic of the North Caspian, which is due to the influx of river waters that change the salinity of the water and enrich it with nutrients, as well as the presence of chemical elements that quickly regenerate in bottom sediments in shallow areas of the sea.

Nitrogen compounds. In the water area of the structure, the level of various forms of nitrogen was determined - total, organic, ammonium, nitrite and nitrate. The results are shown in Table 1.

Table 1 - The content of different forms of nitrogen in the water column of the north-eastern part of the Caspian Sea

<table>
<thead>
<tr>
<th>Indicator Horizon</th>
<th>Spring</th>
<th>Autumn</th>
<th>Indicator Horizon</th>
<th>Spring</th>
<th>Autumn</th>
<th>Indicator Horizon</th>
<th>Spring</th>
<th>Autumn</th>
<th>Indicator Horizon</th>
<th>Spring</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>775 318-1265</td>
<td>775 318-1265</td>
<td>775 318-1265</td>
<td>775 318-1265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>642 Bottom 413-1418</td>
<td>642 Bottom 413-1418</td>
<td>642 Bottom 413-1418</td>
<td>642 Bottom 413-1418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793 317-1329</td>
<td>793 317-1329</td>
<td>793 317-1329</td>
<td>793 317-1329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>644</td>
<td>644</td>
<td>644</td>
<td>644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>685 238-1189</td>
<td>685 238-1189</td>
<td>685 238-1189</td>
<td>685 238-1189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593 Bottom 327-1335</td>
<td>593 Bottom 327-1335</td>
<td>593 Bottom 327-1335</td>
<td>593 Bottom 327-1335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Total nitrogen. In surface waters in the water area of the structure, the concentration of total nitrogen in the spring ranged from 425 to 1321 with an average value of 775 µg / L, in bottom waters from 413 to 1418 with an average value of 793 µg / L. The concentration of total nitrogen both at the surface and at the bottom gradually decreased as one moved from the northwest to the southeast. The maximum values were recorded in the surface and bottom layers in the northwestern part of the studied water area, the minimum - in the surface and bottom waters of the southern part of the water area. This trend was also observed in the autumn period of observations. It should be noted a slight decrease in the total nitrogen content in the water column from spring to autumn [1].

Organic nitrogen. The concentration of organic nitrogen changed in the spring on the surface from 342 to 1290 with an average value of 685 µg / L, at the bottom - from 327 to 1355 with an average of 717 µg / L. By autumn, the content of organic nitrogen, as well as total, in the surface and bottom horizons of the sea decreased by 1.2 times. Across the entire water mass, a gradual decrease in the concentration of organic nitrogen was observed when moving from the northwest to the southeast.

Ammonium Nitrogen. The concentration of ammonia nitrogen in surface waters in the water area of the structure varied from 14 to 95 µg / L (average - 46 µg / L). The content of ammonia nitrogen in bottom waters in the studied water area varied practically within the same range (14-87 µg / L). In autumn, the range of fluctuations in the amount of ammonia nitrogen was much wider compared to spring (at the surface - 5-148, at the bottom 6-82 µg / l).

It should be noted a decrease in its content in water from spring to autumn by 1.8-1.9 times. Exceeding the MPC value (500 µg / l) in the surface and bottom waters of the studied water area during the observation periods from 2001 to 2004 was not recorded [2].

Nitrite nitrogen. The values of the concentration of nitrite nitrogen in the surface and bottom waters in almost the entire part of the water area were below the detection limit of the analysis method used (less than 5.0 µg / l). The exception was local areas in the northwestern and central parts of the structure, where in the surface layer in 2001 and 2002, nitrite nitrogen concentrations were recorded up to 11, bottom - up to 37 µg / l. In the same areas, in the spring of 2003, nitrite nitrogen concentrations increased to 98.7 µg / L (4.9 MAC).

Nitrate nitrogen. The concentration of nitrate nitrogen in surface waters in the surveyed water area varied in the spring from 3 to 136, in the fall from 3 to 115 µg / l. In bottom waters, the content of nitrate nitrogen was slightly lower (4-127 and 4-88 µg / l, respectively). In autumn, a decrease of 1.4 times (surface layer) and 1.3 (bottom layer) times the amount of this form of nitrogen compared with spring. The greatest amount of nitrate nitrogen was usually observed in the western part. No excess of the MPC value of nitrate nitrogen (40 mg / L) was detected in surface and bottom waters in the water area of the structure.

In general, the waters of the North Caspian are characterized by the predominance of organic forms of nitrogen over mineral forms, as can be seen from the above results of a survey of surface and bottom waters.

A comparison of the obtained results with the results of spring studies revealed a decrease in the concentration of total and organic nitrogen in the waters of the structure in autumn. This tendency is also characteristic of ammonia nitrogen. In general, the values of the concentration and the spatial distribution of nitrogen compounds in the considered water area of the Northern Caspian are typical for the studied seasons. It should be noted that the main feature of the spatial distribution of nitrogen compounds in the shallow part of the North Caspian is the increase in their content in the desalinated waters of the estuarine regions in the coastal zone [3].

| Table 2 - The content of phosphorus compounds in the surface and bottom waters of the north-eastern part of the Caspian Sea, µg / l |
|---|---|---|---|
| Indicator Horizon Autumn | Indicator Horizon Autumn | Indicator Horizon Autumn | Indicator Horizon Autumn |
| Total Phosphorus Surface 37-96 |
37-96	37-96	37-96	37-96
57 13-91	57 13-91	57 13-91	57 13-91
44	44	44	44
Bottom 31-87	Bottom 31-87	Bottom 31-87	Bottom 31-87
Phosphorus compounds. The results of determining the content of total and mineral phosphorus in the water area of the structure are presented in Table 2.

The concentration of total phosphorus in surface waters in the Northern Caspian in the region of the structure changed in the spring from 37 to 93 µg / L (average - 57 µg / L), in the autumn - from 13 to 91 µg / L (average - 58 µg / L). Fluctuations in the concentration of total phosphorus in bottom waters ranged from 13 to 91 µg / L in spring and from 12 to 89 µg / L in autumn [4].

Both in spring and summer, the highest total phosphorus content in surface and bottom waters was recorded in the western part of the studied water area, the lowest - in the eastern part.

The concentration of phosphate phosphorus in surface and bottom waters in the studied water area was almost everywhere below the detection limit of the analysis method used (less than 5 µg / L).

The maximum concentration of phosphate phosphorus in surface and bottom waters was recorded in the eastern part of the study area.

The excess of the MPC value (200 µg / L) for phosphate phosphorus in surface and bottom waters was not recorded.

In general, the concentrations of phosphorus compounds and the nature of their spatial distribution in the Northern Caspian are typical for the spring flood period and the beginning of the autumn period. Compared to spring observations, the nature of the autumn spatial distribution of phosphorus compounds remained the same, but the concentration of total phosphorus in the autumn slightly decreased within the considered water area [5, 6].

Silicon. The silicon content in the sea is limited mainly by river runoff. The concentration of silicon in the western, central, and eastern parts of the structure was not the same. Typically, the eastern region is more depleted of silicon than the western and central. However, silicon in comparison with other nutrients contains more than is necessary for biological consumption.

The ranges of fluctuations in silicon concentrations in the spring and autumn periods of observations were close. The silicon content in surface waters in the Northern Caspian on the structure varied from 142 to 1570 µg / L, and in bottom waters from 227 to 1590 µg / L (Table 3). Across the entire water mass, a smooth decrease in the concentration of silicon was observed in the direction from north to south [7].

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Spring Min</th>
<th>Spring Max</th>
<th>Spring Average</th>
<th>Autumn Min</th>
<th>Autumn Max</th>
<th>Autumn Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>145</td>
<td>1570</td>
<td>653</td>
<td>142</td>
<td>1350</td>
<td>525</td>
</tr>
<tr>
<td>Bastard</td>
<td>227</td>
<td>1590</td>
<td>667</td>
<td>105</td>
<td>1300</td>
<td>568</td>
</tr>
</tbody>
</table>

Based on the research results, a preliminary conclusion can be made that the natural self-cleaning potential of the Caspian Sea is in a state of some kind of dynamic equilibrium with modern anthropogenic loads. However, this equilibrium can be violated under the influence of an intensive buildup of economic activity both primarily on the Caspian Sea itself and on its coast.

А.А. Нажетова, Д.Ж. Калиманова, А.А. Копашева, М.И. Берканова

Атырауский государственный университет им. Х. Досмухамедова, Атырау, Казахстан

СОДЕРЖАНИЕ РАЗНЫХ ФОРМ АЗОТА, ФОСФОРА И КРЕМНИЯ В ВОДНОЙ ТОЛЩЕ СЕВЕРО-ВОСТОЧНОЙ ЧАСТИ КАСПИЙСКОГО МОРЯ

Аннотация. В данной статье рассматриваются результаты геохимических исследований северо-восточной части Каспия и содержание разных форм азота, фосфора и кремния в водной толще северо-восточной части каспийского моря. Каспийское море занимает особое положение в экономике прикаспийских государств и имеет международное значение с экологической точки зрения, в плане поддержания биоразнообразия планеты.

Изменения гидрометеорологических условий, играющие главную роль в жизни Каспийского мора, сочетаются с воздействием на его экосистему хозяйственной деятельности, одним из видов которой является загрязнение морской среды.
Интенсивно развивается нефтедобывающая, и продолжаются разведочно-поисковые работы по обнаружению новых месторождений углеводородного сырья. Характерные черты загрязнения нефтепродуктами — множественность источников, поведение почти во все компоненты окружающей среды, рассеивание на больших акваториях, аккумулирование в зонах отложений и т.д. Расторопные и тяжелые компоненты — фракции нефти в водных массах легко адсорбируют другие токсикианты, в том числе токсичные металлы, способствуют их миграции. Они ухудшают качество воды, отрицательно влияют на кислородный режим, нарушают обстановление поверхностных слоев воды в атмосферой и т.д.

Ключевые слова: гидрохимические и геохимические показатели, азот, фосфор, кремний, концентрация.

А. А. Назетова, Д. Ж. Калимов, А. А. Копашева, М. Н. Берзанова
КСИ ПЕЦШІНІҢ СОЛУУСТІК-ШЫГЫС БОЛІШІНІҢ СУ БІРЛЕСІТІНДІГІ АЗОТ,
ФОСФОР ЖОНЕ СИЛІКШІНІҢ ӘРТУРЛІ ФОРМАЛАРЫНЫҢ МАЗУМЫН

Аннотация. Бұл мақалада Каспий теңізінің солутостік-шығыс болішінің геохимиялық зерттеулерінің нәтижелері және Каспий теңізінің солутостік-шығыс болішінің бағанының азот, фосфор және кремнійдің артурларының туралығы айтылды. Каспий теңізі Каспий мұнын елдерінің экономикасына ерекшеленген экономикалық және нәтижелері жаңалықтарға қатысты. Бұл мақалада Каспий теңізінің қарым-қатынас және әртурлі әртурлі қызметкерлерінің әрі өкілін.

Мұндай мақалада қызметкерлердің қарым-қатынас және әртурлі қызметкерлердің әрі өкілін.

Түйін сөздер: геохимиялық зерттеу, азот, фосфор, кремній, концентрация.

Information about the author:
Kalinanova D.N. - senior lecturer of the Department "Chemistry and chemical technology", Atyrau state University.

REFERENCES

REFERENCES

