H3zeecmua Hayuonanvroti akademuu Hayx Pecnybnuxu Kasaxcman

NEWS
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

PHYSICO-MATHEMATICAL SERIES
ISSN 1991-346X
Volume 3, Number 307 (2016), 86 — 90

VIAK 517.958:532.546

YNCJIEHHOE UCCIIEAJOBAHUME ITPOILIECCA
IHAJIBIIEOBPA3OBAHWSI ITPH TEYEHHU IBYX
HE CMEHINBAIOHIUXCH )KUJIKOCTEN B KAHAJIE

A.A. Kyaaiixynos'", K. YKozepana’, A. Kanraes'

"Kazaxckuit HanmoHATbHBIIH Yrusepcurer nMeHHE ans-Dapadu, Anmmatsl, Kazaxcras, Sorbonne Universit'es,
Institut D'Alembert, CNRS and UPMC UMR 7190, 4 place Jussicu, 75005 Paris, France

KiroueBnie ¢Jj10Ba: TCUCHHC ABYX HCCMCINHBAIOIIUXCS )KHZ[KOCTefI, KOHTAKTHAsA JIHHHA, KOHTAKTHBIN yronu,
KaMMUBIPHOE YHCIIO, MATLEOOPa30BaHUE, TPAHUYHOE YCIOBHE MPOCKAIB3bIBAHUS, METO] 00BEMA SKUIKOCTH.

Annoramua. B ganvoi#t paboTe YMCICHHO HWCCIACIOBAH MPOICCC MANBLICOOPA30BAHHMA MPH TCUCHHH IBYX
HECMEIIMBAIOMIIXCS XUAKOCTCH B KaHAIE, 4 HMCHHO HCCJICAOBAHA CBSI3b MCKAY IIHPHHOM MANbICOOPas0BAHUS H
KaMAUBIPHBIM YHCIOM M PE3yJIbTAaThl CPAaBHEHBI C padortoit [6]. Taxke B JaHHOH padOTE MCCIIETOBAHBI MPOLECCH
mepexoJa U3 PyUeHHOTO BUIA B KIMHOBHIHBIN BH/I MAIBIICOOPA30BAHMS AT PA3IHMUHBIX 3HAYCHHH KO3(pPHUIHCHTA
MOBEPXHOCTHOTO HATSHKCHUS. Bce unciIeHHbIe pacyeTsl MPOBOAMINCH C IIOMOIIBEO mporpammsl Gerris [7].
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Abstract. In this paper we numerically investigated the fingering pattern formation in the unstable interface
between two immiscible fluids during the flow in the channel. The relation between finger width and capillary
number is investigated in this paper, and compared with work [6]. Also in this work the transition from rivulet-type
finger to wedge-shaped finger is investigated for different values of surface tension. All numerical calculations are
performed using Gerris program [7].

Introduction. Two immiscible fluids flow can be found in many different situations; some cases in
which it plays a central role are the spreading of adhesives, the flowing of lubricants into inaccessible
locations, the coating of solid surfaces with a thin uniform layer of liquid, the displacement of oil by water
through a porous medium, etc. One of the phenomena which occurs in the two immiscible fluids flow is
the fingering pattern formation in the interface between fluids. This phenomenon can be observed in the
pressure-driven flow of two immiscible fluids in a channel (see fig. 1). The experiment [1] shows that
even if the interface between fluids is initially straight, it quickly deforms, resulting in the formation of
finger-like structures. The instability leading to this pattern is referred to as fingering instability. Two
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types of fingering shape can be observed in the experiment: wedge-shaped finger and rivulet-type finger
(see fig. 1). Formation of fingering pattern can result in poor quality of coating or reducing oil production
by water displacement in porous medium, so investigation of fingering instability is important for
practical applications. There are exist many quantitative models of this phenomenon and one of the most
popular is the thin-film flow down an inclined plane [6]. In this model the linear stability analysis is
employed for lubrication-type equations to describe evolution of small perturbations in the interface
between two immiscible fluids and this model can’t be used for large deformation of the interface.
Nevertheless, this model can estimate the finger width of rivulet-type finger (see fig. 1). The finger width

depends on the capillary number:
1

=h-h ~Ca 3, (1)

h layer finger
where Ca is the capillary number. It’s the ratio between viscous force and surface tension force:
&
Ca=ta
o

where U, o7, 1s the contact line velocity. In this paper we numerically investigated the fingering pattern

; 2

formation in the unstable interface between two immiscible fluids for flow in the channel. The relation
between finger width and capillary number is investigated in this paper, and compared with (1). Also in
this work the transition from rivulet-type finger to wedge-shaped finger is investigated for different values

of surface tension, and showed that the rivulet-type finger occurs only when [5]:
1

C=Ca 5tg6’>1. (3)
All numerical calculations are performed using Gerris program [7].
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Fig. 1 — Fingering patterns in the interface between two immiscible fluids: a) wedge-shaped finger, b) rivulet-type finger.

Formulation of the problem. We¢ numerically solved the Navier-Stokes equations for
incompressible, two immiscible, viscous fluids flow in 2D channel:

L1 -(pii) ==V +V - ), o

1 - —T
E=§(Vu+Vu ). (5)
V-u=0. ©)

op =

—+V-(pu)=0, 7
o (pu) (7
p=Fp +(1-F)p,. (3)
p=tp+(1-F)u,, ©)

where [ is the parameter that identify a given fluid 7 (7 =1 or 2) is present at a particular location X :
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L, if xisin fluid i
el Yoxwm fudi (10)
0,if x is not in fluid i

If we substitute the equation (6) into the equation (5), we have that:

a—F+u-VF=O. (11)
ot
In order to find the shape and location of the interface between the two fluids, we use the volume-of-
fluid method [3] and advect this interface using equation (11). Equations (4, 6 and 11) are numerically
solved using the projection method on non-staggered grid [4] and the following boundary conditions were
used (see fig. 1):
1) Inlet boundary condition:

ou,
=0, 12
ox (12
v, =0, (13)
p, =1 (14)
2) At the walls of the channel:
u, = /18—1 (15)
on
v, =0, (16)
P, =0, (17)
y

—

where A is the slip length and 72 is the normal vector to the wall. Here we used the Navier slip boundary
condition instead of no-slip boundary condition to avoid viscous stress singularity at the contact line [2].
3) At the interface between two fluids — S:

lﬁLzO, (18)
—l—p+2y;-E-;JS:Uk, (19)
k:—V-E, (20)
—[2ut-E-nly=t-Vo. 1)

where O is the surface tension, & is the curvature of the interface - S, 7 is the normal to the interface -

S, and ! isthe tangent vector to the interface - S
4) Outlet boundary condition:

a;”f =0, (22)
vout = O’ (23)
Py =0. (24)

Results. The steady state solution of the equations (4, 6) with boundary conditions at the walls of the
channel (15 - 17) and with boundary conditions at the interface between the two fluids (18 - 21) can be
obtained by neglecting the viscous force on the interface between the two fluids (21):

o - h2_ 2
pzn fz pc( 2y +/lh),

U= 5)
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where p, is the capillary pressure. The value of capillary pressure can be obtained from Young-Laplace
equation and for 2D case (see fig. 1):

b = ocost 26)
4 h :
The average value of (25):
o 2
u= M(h_ + Ah). @7

ul, 3

In this work we numerically validated the relation (1) for rivulet-type finger. To validate this relation,
we consider two cases: in the first case, the pressure difference between the ends of the channel is
constant, but the surface tension of the interface between two immiscible fluids is changed, and in the
second case, the surface tension is constant, but the pressure difference is changed. In the first case, the
velocity along the center line of the channel is linear depends on the surface tension (25, 26). Since the
contact angle - @ (see fig. 1) depends on the capillary number [2]:

1

0~Ca’, (28)

therefore the contact angle - @ almost doesn’t change. As shown in fig. 2, the contact line velocity
almost doesn’t change too. In the second case, the velocity along the center line of the channel is linear
depends on the pressure difference between the ends of the channel (25), and as shown in fig. 3, the
contact line velocity also linear depends on the pressure difference between the ends of the channel. In fig.
4 is shown the relation between the finger width and the capillary number, and this relation is almost
matched with the relation (1). Also in this work the transition from rivulet-type finger to wedge-shaped
finger is investigated for different values of surface tension. For surface tension & =1, the value
C =284 (3), and for 0 =2, the value C =1,59 . The relation between finger width and contact

angle is shown in the fig. 5.

Conclusion. In this paper is numerically investigated the fingering pattern formation in the unstable
interface between two immiscible fluids during the flow in the channel. The relation between finger width
and capillary number is investigated in this paper, and this relation is reasonably good matched with [6].
Also in this work the transition from rivulet-type finger to wedge-shaped finger is investigated for

different values of surface tension, and is showed that this transition occurs only for C > 1 [5].
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Fig. 3 — The relation between contact line velocity
and pressure difference

Fig. 2 — The relation between contact line velocity
and surface tension
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Fig. 5 — The relation between finger width
Fig. 4 — The relation between finger width and contact angle
and capillary number
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CAYCAK TOPI3JI ATbIC ®OPMACBIHbIH ITAUJA BOJIY ITPOLUECIHIH, CAHABIK 3EPTTEVYI
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Tyilin ce3aep: exi apanacraiiThiH CYHBIKTap/AbIH aFbIHbBI, TYHICKEH CBI3BIK, TYHiCKeH OYpBIN, KanWULIPIbIK caH, caycak
Topi3Ai arbic popMachiHbIH Haiijia GOybl, ChIPFAHAK ITIEKAPAJIBIK IMAPT, CYHBIK KeleM 9/Iici.

AnnoTamusi. Ochl JKYMBICTAa KaHalJarbl €Ki apanachnalThiH CYMBIKTapblH aFbicTa caycak Topiszi arbic (GOpMachiHBIH
naiiia GoNybl CaHJBIK 3epTTENreH, aTal aiTKaHja caycak (POpMAchiHBIH €Hi MeH KalWJUISPIbIK caH apachlHAarbl GaiiaHbic
3epTTeNiHTeH, koHE aJbIHFAaH HOTH KeJep 6acka jKyMbICTapMeH casbicThIpbLIFaH [6]. bapibik ecenteyiep Gerris 6arjapiamMachl
apKbUIbL XKacalraH [7].
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