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BOUNDARY VALUE PROBLEM FOR ELASTIC HALF-SPACE BY
SUBSONIC VELOCITIES OF SURFACE TRANSPORT LOADS MOVING

Abstract. The first boundary value problem of the theory of elasticity for an elastic half-space at the movement
on its surface of subsonic trans loads is considered. The speed of motion is less or more than the speed of
distribution of elastic Rayleigh waves. On the basis of the generalized Fourier's transformation the fundamental
solution of a task is constructed which describes dynamics of the massif at the movement of the concentrated force
on and along its surface. Based on this, an analytical solution is constructed for arbitrary transport loads distributed
over the surface, moving with the pre- Rayleigh and super-Rayleigh velocities. It is shown that when the Rayleigh
wave velocity is exceeded, the transport loads generate surface Rayleigh waves.

The task is a model for research of the intense deformed condition of the pedigree massif in the vicinity of road
constructions at moving transport.

Keywords: boundary value problem, an elastic half-space, trans loading, subsonic speed, Rayleigh wave, the
stress-strain state.

Trans loads are very widespread in practice. As those we understand the moving loads which form
doesn't change over time, but their position are changing in the environment. Dynamic deformation
processes, which arise in the ground under their influence, expand with different speeds, characterizing
clastic properties of the medium. In isotropic elastic medium there are two sound speeds of expansion of
dilatation waves (c¢1) and shifi (c;) waves (c1-¢»). The relation of speed of trans load to the sound velocities
significantly influences to the stresses and deformations in the elastic medium. We consider here the
subsonic case, when speeds of loads are less then shift waves speed. This case is characteristic for trans
problems as the speed of the movement of the most modem vehicles is many less then the speeds of
clastic waves propagation. From trans loads we especially distinguish stationary ones which move in the
fixed direction with a constant speed (fransport loads). This class of loads allows to investigate diffraction
processes in isotropic elastic medium in analytical form.

In papers [1-3] the fundamental and generalized solutions of the Lame’s equations are constructed
and investigated which describe the movement of elastic medium at the action of concentrated on an axis
and distributed loading in all range of speeds (subsonic, sound, transonic and supersonic ones). On this
basis in [4-7] the method of boundary integral equations has been developed for solving the transport
BVP in clastic medium with cylindrical boundaries. This class of problems is very important for
applications in the field of dynamics of underground constructions, trans tunnels and excavations of deep
laying.

However there is a class of model trans tasks (for example, road problems) when loadings move on
the surface of a half-space. It is known that there is also sound speed in an elastic half-space with which
superficial Rayleigh waves are propagating. The Rayleigh’s speed is less, but is very close to the speed of
shift waves [10,11]. Rayleigh's waves don't create tensions on half-space border, but significantly
influence on the tensions and deformations of the massif near a free surface.

For the first time such task was considered and solved for a subsonic pre-Ryleigh case by flat
deformation in work [8]. Here the analytical solution of this task in three-dimensional statement is
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constructed also in a subsonic case, when the speed of subsonic trans load is less or more than the
Rayleigh’s speed.
1. The statement of transport boundary value problem for elastic half-space

Elastic isotropic medium, with Lame’s parameters Au and the density p, occupies half-plane
x; >0, n (x)=(-1,0, 0) is unit vector of the external normal to its boundary D = {x e R’ X = O}.

Constants ¢; and ¢, are the velocities of elastic waves propagation [11]:

/ +2
¢ = A+2u . Oy = \/Z’ ¢, < ¢ (sonic speeds):
P P

Boundary transport load P(x,7) are moving with constant subsonic speed (¢ <c,<ci) along the axis

Xs: P(x,) = pp;(xy,x;+ct)e;. Components of stress tensor G; are connected with medium

displacements u(x,7) by Hook’s law:
oy =Adivu oy + p(u. +u )

For dynamics problems this law better to write in the unitless form:

Hook’s law:
2
v o_ 1 :
—=| -2 |divud; + (u;.;+u;.;) (1)
H )
Here and everywhere further on the identical indexes the tensor convolution have been made. Private
Ou;

derivatives on the corresponding coordinate are designated by the index after comma: u;, ===
7

6, = 5/ is Kronecker symbol.

The stationary movement has been considered that allows to pass into mobile coordinates system
which are connected with transport load. Further we use designations: x = (x,,x,), z = X3 +cf .

It’s supposed that components of the load allow the Fourier's transformation, ie. they are
representable in the form of Fourier's integrals:

B0 =0, 002) = o j P, (1.€)exp(-i(xyn + & 2))dnds .
Pa(1.6) = | (%3, 2) expli(,n + 26))dlx,dlz

RZ
The Lame’s equations for displacements of clastic half-space in mobile coordinates system have the

form [1]:
(s, —Mf);; +a-@.)7)s |u, =0 3)

Y

This operator we denote L ( 01,0,,0,). Here two Mach’s numbers are introduced:
M =cle, M,=clc,,
which characterize the velocity of transport load in relation to the sound speeds of ¢lastic waves.
Eqgs. (3) were studied in [2,3]. There are three cases: subsonic (C < cz), transonic(c2 <c <cl) ,
supersonic (C > Cl) and two sonic cases (C =Cy,C= Cl) . In the first case (M, <1, M, <1)the system

(3) is elliptic, in the second one (M, <1, M, >1)it has have the mixed elliptic-hyperbolic type. In
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supersonic case (M, >1, M, >1) this system is strong hyperbolic. By sonic speeds it is mixed
parabolic-elliptic if M, <1, M, =1, and it’s hyperbolic-parabolic if M| =1, M, >1.

By sonic and supersonic velocities the shock waves can appear in elastic medium. There are the next
conditions on the jumps on their fronts /:

[u]}F =0 = hz[ui,]}F :hj[ui’ZJF;
) —
hj[al_jl—pc hz[ui,Z]F, i,j=123.

Here h(x,,x,,z)=(h.h, h,oh) is wave vector, |

direction of wave propagation. The continuity of elastic medium gives the first condition. The second
condition is continuity of tangent derivatives at the front of a wave; it is consequence from the first one.
The third formula is law of momentum conservation on waves fronts.

Here we consider the subsonic case. It’s required to find the solution of the BVP which must to
satisfy

the attenuation condition on infinity:

u—>0 by x —>+40 or z—>1w. (5

Also we’ll enter later some additional radiation conditions by construction of BVP solution.

4

h" =1. It’s perpendicular to a front F in the

1. Green tensor of transport BVP
To solve the problem, we construct the Green's tensor H]; of the boundary value problem in a

moving coordinates system. For its determination we have the following boundary value problem.
To find the tensor solution of homogeneous motion equations :

B} 2\ &2 0"2} -
2 2 -2 k ;g
(M -M )7+M A-— |8/ IT" =0, i j,k=123 (6)
1 2 2 2 |7 J A T
Ak, [ &

in the region x; > 0, which must to satisfy the attenuation condition at infinity:
k
IT% (x,2) - 0 for |(x,2)| >0 . (7)

Corresponding stress tensor Z;’-’k , which are calculated by use Hooh’s law (2), has the form:

Z?k :O‘H;nal 5]’k+(H?’k+HlZl’j) :Sj'k(ala62762)H;n(x17x27z)7

®)

T h e o r e m. The solution of the given boundary-value problem has the form of the following
convolution on the boundary of a half-space

u]'(x17x27z) = J.Hj.(xl,xz —Y2,2=Y3)P,(Vo, ¥3)dydys,  j=123. )

Rq
and must satisfy to the following singular conditions on the free surface : for x;=0

zlnf = O{H;Cn’k 51'1 +(Hlm’l+H{n’i ) = 5im5(x2)5(z)> jamak = l>2>3~ (10)

2 )
M
where O (X ) is generalized Dirac function, o = i = (0—12 — j = {—22 — 2} .
7,
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P r o o f. Indeed, by virtue of (1), (10) and the convolution propertics we have on the boundary of the
half-space:

IZ;’.'I(O,XZ — V2,2 = Y3) P (Y2, V3) dyody; = 5;'”5(3‘2)5(2) *P,(xy,2) = pj(x27z)'
Rq
Here on the right there is a functional convolution along the half-space boundary and tensor
convolution by the index m. The displacements (9) satisfy to the homogeneous transport Lame equations
(3) in the half-space:

L(01,05,0,)u; = Ipn(yzays)sz' (01,0,0,)I1(x1, %5 = ¥,z = y3) dyrdy; = 0
Rq
in view of (6) and the invariance of these equations with respect to the shift at the boundary of the
half-space
This tensor T1(x,z) gives possibility to use the formula (9) for determination of displacements in a
half-space for any loading on its surface. The stresses at any point of the elastic half-space on the arca
with the normal # are determined by the formula

S(xp,%5,2,n) =0 (X, %, 2)1 € =

% (11)
=Hen; Izég'(xlax2 —¥2,2=y3)P1(V2, y3) dy,dys.
R4
Thus, the definition of the fundamental displacement tensor determines the solution of the problem.
We construct the tensor I'l(x, z) using the scalar and vector elastic Lame potentials.
2. Statement of the transport problem for Lame’s potentials
The displacements of the elastic medium can be represented in terms of the scalar and vector Lame’s
potentials [1,11]:
u=gradp+roty (12)

Since the three components of the displacements are determined through four potential components,
the vector potential is usually associated with a Gaussian or Lorentz gauge. Here it is convenient to use
the representation:

v =wies +rot(yses).

which uniquely links the three components of displacements with three potentials. If the displacements
satisfy to the homogeneous Lame equations, then the potentials satisfy the d'Alembert’s wave equation
with the corresponding velocity:

Foat’)
—=0
or?

cleg/)—

2

(12)

2
AAy, - aa;/gk =0, k=12

where A is Laplace operator. In the moving coordinate system these equations are transformed to the form:

2
Ago—Mfa—f:o,
) oz (13)
Ay -3 2 Y=o, k=12
oz

— ] ——
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To construct the tensor H;. , we use similar potentials. Namely, we represent it in the form
T (xy,%5,2) = D,,,(0,,0,,0,)®, = 0, D" +¢,,,0,D5 +e,,€,30 0,07
Dy,(6,,0,,0.) =0y
D5(6,,0,,0.) = €;30,
Dy5(6,,0,,0.) = ekaemaiaj
Here ijk/m=123, €jjk is Levi-Civita pseudotensor. The first potential describes the gradient

(14)

component of the displacements field, and the other two potentials describe the rotor (solenoidal)
components . The potentials satisfy to the
transport wave equations:

or "
m 2 J _ :
Aq)]- —-M; 2 =0, j=123. (15)
We name them fiundamental potentials. To calculate them we use boundary conditions (9) :
by X1 = 0

a LTy 8, + (T, +TT7) = 676(x,)0(2)

where

I}, = ADY" +e,,30,0,075 + e,q,eli38k8i8jq)m ,

I, = 0,007 +€;30,0,@7 + eijlelk3akajalq)§n ;

I, = 0,00 +¢€,;0,0,®5 +e, ,€,,0,0,0D%,

We can to write it in the form:

B,,(0,0,,0,)®) =6{"5(x,)5(z), n,m=123, (16)

where
B, @) = [281-51@{” +0; {(ez'k3al +ey430; )qyzn +0,; (egzemal + €y /€30, )CD;” }]+
+ a[ACD{” + emakajq);” + e@lemakasaj@;" i =

B, (01,0,,8.)®7 = (aB,A +20,0, )07 + 0, (06,0, + €430, + €130, JOF +

+0,0; {05 1€11€530 5 + (ez'jlelk3al + € €430, )}q);n =
— (aM25,0.0, +20,0, 07" +0, (05 16,30, + €30, + yad, JOU +
+0,0, {0‘5ilekﬂezs3as T (ez'jlelkBal + e 830, )}q);n
This implies
B,,(0,.0,.0.) = (edM?6,0.0. +28,8,)
B,,(0,0,,0.) = 6, (0551'1%'381 +e,30; + elkBai)
B;3(0,0,,0,) = 0,0, {0‘5ilekﬂezs3as + (ez'jlelkBal +e 48430, )}

Using the properties of the permutation of the indices of the Levi-Civita tensor and the formula for its
convolution:

elijelkm = 5ik5 jm 51m5k] >

these operators can be greatly simplified:
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B,1(0,,0,,0.) = (mwfaﬁ * 2512),
B,1(61,0,,0.) =20,05, B31(0,,0,,0.) = 20,03,
B\1(01,0,.0.) = 0, (creysd + €430, + eysd) ) = (30,0, +20,0,) =
= 0{(61238182 + 62138281) + 20,0, =20,0,,
B,,(01,0,,0,) =0 (05521%'35]' +ey30) + elk382) =
= (62135151 + 61235282) = 0,0, =010y,
B3,(01,0,,0.) = 0 (€330, +ey4303) = 0,03,
B,3(01,0,,0,)= 0,0, {aekjlelm3am + (el Ji€301 T € jlelk3al)} =
= (503 — 56,3 ) 04000 + (603 — 6135 )818,0; +
+(0146 3 — 8130 1) 01040, = t(058,,0,, - 83,8, ) +28,0,05 = 26,0,
B13(01,0,,0,) = €5 4€30,040 ; + € j1e30,0,0 ; =
= (803~ 63301 ) 01040, + (8148 ;3 — 81301 ) 02048 = 20,0205,
B13(01,0,,0,) = €5 1€30,040 ; + € 30,040 ; =
= (8403 — 63304 ) 01040, + (8148 ;3 — 8130 4 ) 0,04,8; = 20,0505
As aresult, we get:
By, =(aM70.0, +287), B, =20,0;, By =200,
B,1(01,05,0.)=2010, By(0),0,,0.) =020, =010, By3(01,0,,0.) =20,0,03, (17)
B31(0,0,,0.) = 20,03, B3;(0,,0,,0.) =2030,, B33(0,,0,,0.) =20,0,0s.

Thus, the problem of constructing the transformants of the unknown tensors reduces to determining
the Lam¢ potentials satisfying equations (14), the boundary conditions on the free surface (16), and the

damping conditions at infinity:
®% -0 by |(x,2)| > 0. (18)

and certain radiation conditions, which we discuss below.

3. Determination of Fourier transforms of fundamental potentials
To construct the solution, we use the Fourier transform of the potentials with respect to x,,z. In the

space of Fourier transforms, they correspond to variables 77,4 . Their Fourier transforms are defined by
the relations:

D" = [@" (x,2)expliny+icz)dzdy, , - [®" (x.n.6) exp(iney—igz)dgin
R? T R?

In the space of Fourier transforms the equations for the potentials (14) have the form:
dZCDT— 0" -a’Pd" =0 = J1-M?, j=1273 19
de 77 j ajé/ joT Y a]' - j » J=L4,0. ( )
1

The expression under radical is positive, because we consider the subsonic case.
The boundary conditions are transformed to the form:
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Bik (ala_i na_lg)alzn (xlanag) = é‘lm by X = 0. (20)
Conditions for damping at infinity: for ¥V 77,&
;" (x1,17,§) = 0 by x; > 0. 1)

By these conditions the solution of Eq. (19) has the form:

P = g/);.‘(n,g)exp(—xl,/n2 +a]2.§2) . Reyfn* +a’¢? >0. (22)

Functions g/)f (n7,¢) are determined from boundary conditions (19) :

3
> B, (—\/772 +a;¢,—in,—i0)p) = 8" k=123 (23)
j=1

Thus, for each fixed m, we have the linear system of three equations for determination ¢, from
which we find

o = M (24)
T AmE)
Here An;- is corresponding algebraic complement, and the denominator is equal to
A(n,$)=det{B, (~yn" +a;¢”,~in,~ig)} .
This is a well-known Rayleigh determinant. In this case it has the form:
A= a2 MW MY MV =t 05)

The propertics of Rayleigh determinant are known. For transport problems, it was well studied in [1].

In particular,
A(n.&)=0

by n=1,(5) = £[{|yM; -1 & gzgg(n):il

2

R

(26)

where M, =c/cy, ¢ is the velocity of the surface Rayleigh wave, which is subsonic (¢, < ¢, ). It can
be determined from the equation:

41/1—m121/1—m22—(2—m§)220,mj:cR/cj 27)

Formulae (22), (24) formally resolve the problem in the potentials. However, in order to reconstruct
the originals, it is necessary to investigate the properties of the transformants - integrand functions in (18),
which essentially depend on the speed of a transport load.

6. Restoration of originals IT;" and Z;’-’k by pre-Releygh speed ¢
From (14) we get
= = A (1.8)
lecn = Dkn(al,—in,—ig)q)m(xl,n,g) =———=
! A(n.¢)

— A"
H[r{n _ n(rlaé/)Dkn(_mj—jn’—ig)eXp(_ x]WJ

~AMLE)

Dkn (ala_i 77:_l§) exp(_ X1 V 772 + angz ) =
(28)
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107 (x,,7,) = Dy, (—\n* + &3¢ ,=in, =i )l (x,m, Oy exp(=x,\n° +2(?) (28)

Using the inverse Fourier transform, we obtain

I (x,,%,,2) = (27) * [ 117 (.1, & Yexp(=ipx ,+{ 2))dgdn =

= (27[)72]‘Dkn(_ ’772 +0[12'4/2aiﬂaif)(ﬂ:(ﬂ,é’)exp(—xl ’772 +C¥]2.4/2 —iﬂxz—i[z)dgdn _ (29)
oy [Pl N 0. 0)

AD) exp(—x,\n° +a¢? —inx ,—i{ z)dgdn

Let us calculate the fundamental stresses and their transformants. For this, we use the formulas (10),
from which we obtain

Z?k = AL, S+ ,U(H?akJFHiTaj )= Sj‘k(alaazaaz)ngn =
Sj’k(ababaz)Dln(al?627az)q)g (%,%,,2) = Tjkn(ahabaz)q)g (%,%,,2), (30)

Tjkn = Sj’k(ahabaz)Dln(al’aZ’az)
Hence we get

n,¢
= TN + @67 =i, —ig) =222 (1.0 ( xn/ﬂzwngzj

AmE)

The original of the stress tensor in any point (x, z) is calculated by use the formula
2 (%, %,,2) = (21) " f 2 (0, 1.8 exp(=i(npx ,+{ 2))dgdn. (1)
R2

For ¢ < ¢, the determinant A(7,4 ) # O for any real £,7 . That is, at the pre-Releygh velocities all
the integrands are continuous and tend exponentially to zero when (77,£") tends to infinity. Therefore, the
integrals exist and satisfy the damping conditions at infinity.

When x; =0, (x,,z) #(0,0), the integrands in (29) and (31) are also continuous and integrable,
since they are oscillating and have the order of damping not lower O((772 + gz)_l).
7. Determination of displacements and stresses at pre-Rayleigh speeds of transport load

To calculate the displacements of the medium for arbitrary transport load, we find the Fourier
transform of the displacements. According to (9) and the convolution properties

L_lj(xlaﬂaé/) = sz,z[uj(x17x27z)] :ﬁ;'l(xlaﬂa g)l_)n(ﬂa g) (32)

Substituting it in (28), we have
- P, 98, (1,$) o
(o ¢) ==l Dy (n* +a,6” —in-ig)exp) —xj\n” + 1,6

Returning to the original, we obtain formulas for calculating the displacements at pre-Rayleigh
speeds:

—— )8 ——
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(31, 55.2) =5 [ [T (o) iy + 26))dide
R2

To determine the stresses, we use the formula (11), which for the Fourier transforms has the type:

Oy 01,52, =[S} 1. )P, (n.6) explciCeam + )
R2

At pre-Rayleigh velocities in formulas (31) and (32), all the integrands are continuous and tend
exponentially to zero by x; — co. Therefore, the integrals exist and satisfy the damping conditions at

infinity. The asymptotic behavior of displacements at infinity is determined by the asymptotic of the
transport load on the surface of the half-space.

6. Construction of Green tensor I at super-Rayleigh speed (¢ <c<c,)

If subsonic speed ¢ is more then Rayleigh speed cg then for constructing the solution we transform
contour of integration in the e-vicinity of point ¢, (77) by any fixed 7 by way of moving along the circle

of radius ¢ in upper half-plane of complex { by z>0 and in under half-plane by z<0 to get under sign of
integral the waves, which tend to zero by |Z| — . If & = 0, then, with use the theorem on residue of

complex analysis, we get Green tensor in the form:
47 17 (x,,x,,2) =

_ j {VP | ZD (7 +aCini¢) Am((”g) exp(-x,\[7° +a’S? ~if Z)dg}e_i"xzdn— (33)

—oo j=1

. T My -M; A (11.47) My —M; | -icreyaciony
. D n >R 2 R d
msgnZZijZ; ( |77| —R é’R J—;(Uagg(ﬂ)) |77| —M 1 n

R

Here to calculate the Value Principle integral we can use the formula:
VP, I D, (T + e im i) ((’7 5)) xp(—x |7 + @ —iC 2)dg =
(Ykn(xlazn 777 g) + Y(xlazana g) exp( xl‘\’n ta; é/ )dga

Ykn(xlﬂzanﬂg) Dkn( W”’IJC) (ZEC);)

o!—.s

The last integral doesn’t have singularities in Rayleigh’s points and can be calculated numerically.

The second summand in formula (33) describes the surface Rayleigh waves, which are generated by
transport load when cx<c<c;

By ¢=cr the stationary solution of this problem doesn’t exist.

Conclusion. Here presented solutions of boundary value problems are very useful for applications
when assessing the impact of road trans on the environment. It allows to determine the stress-strain state
of the rock massif, depending on its elastic properties, the type of the acting load and the speed of the
vehicle. This is especially true now with the development of high-speed road and rail trans, the speed of
which can have a devastating impact on the surrounding arcas. The obtained solutions allow us to
determine the range of possible speeds of movement, taking into account the strength properties of the
rock massif and the road surface, which makes it possible to ensure the safety and reliability of operation
of modem vehicles.
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JLA. Allekceesa
WHCcTHTyT MaTEMaTuku B MaTeMaTHUeCKoro Moaemuposannst MOH PK

KPAEBA 3AJJAYA IS YIIPYTOT'O NOJIYINPOCTPAHCTBA
PA JO03BYKOBBIX CKOPOCTAX ABUXKEHHUSA TIOBEPXHOCTHOU HAT'PY3KH

Annoranmsi. PaccmMarpuBaercs mepsas Kpacsad 3aada TEOPHU YIPYTOCTH A YIPYIOro IOJIyIPOCTPAHCTBA
MPH JABWKCHUM II0 €T0 IOBEPXHOCTH TPAHCHOPTHOH HArPy3KH CO CKOPOCTHIO, MCHBINCH, UYeM CKOPOCTH
pacmpocTpaHeHud yIpyrux BosH. Ha ocHoBe 0000mmeHHOro mpeoOpazoBaHus Pypbe mocTpoeH TeH3op I'puHa -
(hyHIAMECHTAILHOE PELICHHUC 3a7a4H, OMICHIBAIONICE THUHAMHUKY MACCHBA IPU JIBIKCHUH COCPEIOTOUCHHON CHIIBI TIO
€ro MoBepxHOCTH. Ha ero ocHOBE MOCTPOCHO AHATUTHYECKOE PELICHHE A HMPOU3BOJILHBIX PacHpPEICICHHBIX IO
MOBEPXHOCTH TPAHCTIOPTHBIX HATPY30K, ABIKYIIHMXCA C JOPEICEBCKOM M CBEPXPENEEBCKOM CKOPOCThIO. ITokasaHo,
YTO IPH MPEBBIIICHAN CKOPOCTH BOJHBI Pesiess TpaHCTIOPTHBIE HATPY3KH TEHEPUPYIOT MOBEPXHOCTHBIE PEIICCBCKHUC
BOJIHBI.

3ajaya sBIACTCA MOJCIBHOHM AT MCCIACAOBAHHA HANPSDKCHHO-AS()OPMUPOBAHHOIO COCTOSHHUA MOPOTHOIO
MACCHBA B OKPECTHOCTH JTOPOIKHBIX COOPYKCHUH P JBIFKY IIEMCSI TPAHCTIOPTE.

KmoueBsle cioBa: ynpyroe mOIyHIpPOCTPAHCTBO, TPAHCIOPTHAS HATPY3Ka, AO3BYKOBas CKOPOCTb, BOJHBI
Penest, HanpspKeHHO-AS()OPMHPOBAHHOE COCTOSAHHE.




