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Abstract. In this note we prove that the minimum of the second characteristic number of the Newton potential
among bounded open sets of R with given volume is achieved by the union of two identical balls. The Newton
potential can be related to a nonlocal boundary value problem for the Laplacian, so we obtain results on the second
eigenvalue of the nonlocal Laplacian as well.

1 Introduction. LetQ be a bounded open domain in RY,d > 3.Consider the Newton potential
operator N: L,(Q) — L,(Q)

Nfi= [ eale=0r o)y M
o
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1
—y) = d=3 2
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ando,; = 2rﬂ(—d)zis the surface area of the unit sphere in R,
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Since g, is real and symmetric function N is self-adjoint operator. Therefore, all characteristic num-
bers are real. In addition, it is easy to check that the operator N is positive. This means all its eigenvalues
are positive. The characteristic numbers N of may be enumerated in ascending order,

M1 = pp =
wherey; is repeated in this series according to its multiplicity. We denote the corresponding eigenfunc-
tions by u;,u;, .., so that for each characteristic number y; there is one and only one, corresponding

cigenfunction u;,
ui = ‘uiNui, i = 1,2,

In a bounded domain ) of the Euclidean space RY, it is very well known that the solution to the
Laplacian equation

—Au(x) = f(x), xe, A3)
is given by the Newton potential formula
U(X)=fQ 5d(x_3’)f(Y)d% x €, (4)

for suitable functions f supported in (2. An interesting question having several important applications is
what boundary conditions can be put on u on the (smooth) boundary dQ) so that equation (3) com-
plemented by this boundary condition would have the solution in still given by the same formula (4), with
the same kernel g4 given by (2). It turns out that the answer to this question is the integral boundary
condition [4]
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— T2+ [, P u)dy — [ eale =) G2 dy = 0,x € 00, 5)
where ainy denotes the outer normal derivative at a point y on 9(). A converse question to the one above
would be to determine the trace of the Newton potential (4) on the boundary surface d(2, and one can use
the potential theory to show that it has to be given by (5).

In [4] by using the boundary condition (5) the eigenvalues and eigenfunctions of the Newton
potential were explicitly calculated in the 2-disk and in the 3-ball. In general, the boundary value problem
(3)-(5) has various interesting properties and applications (see, for example, Kac |2, 3] and Saito [8]). The
boundary value problem (3)-(5) can also be gencralized for higher degrees of the Laplacian, see [3]. In
this paper we are interested in some spectral geometry questions of N.

Historically, for the first time in the scientific literature, in Rayleigh’s famous book “Theory of
Sound” (first published in 1877), by using some explicit computation and physical interpretations, he
stated that a circle minimizes (among all domains of the same arca) the first eigenvalue of the Dirichlet
Laplacian. The musical interpretation of this result could be: among all drums of given area, the circular
drum is the one which produces the deepest bass note. The proof of this conjecture was obtained after
some decades later, simultancously (and independently) by G.Faber and E Krahn. Nowadays, the
Rayleigh-Faber-Krahn inequality has been expanded many other operators; see [6] for further references.

In Section 2 we prove the following Rayleigh-Faber-Krahn theorem for the Newton potential N, i.e.
it is proved that a ball is minimizer of the first characteristic number of the Newton potential N among all
domains of given volume in R%.

In Section 3 we are interested in minimizing the second characteristic number of N among open sets
of given volume. We show that the minimizer is no longer one ball, but two! The similar result for the
Dirichlet Laplacian called Krahn-Szego theorem, that is, the minimum of the second eigenvalue of the
Dirichlet Laplacian among bounded open sets of R% with given volume is achieved by the union of two
identical balls. See, for example, [1] for further references.

2 Rayleigh-Faber-Krahn theorem. In this section we prove the following analogy of the Rayleigh-
Faber-Krahn theorem for the Newton potential N.

Theorem 1. A ball 2* is minimizer of the first characteristic number of the Newton potential N
among all domains of given volume, i.e.

pi (%) = i (2) (6)
for an arbitrary bounded open domain 2 € R? with |Q| = |2*|.

We will use this result later in the proof of Theorem 2.

Proof of Theorem 1. Slightly different statement of Lemma 1 is calledJentsch’s theorem in [9].
However, for completeness of this note we restate and give its proof below.

Lemma 1.7he smallest characteristic number yu, of N is simple; the corresponding eigenfunction uq
is positive and any other eigenfunctionu;, i # 1 is sign changing in ().

Proof. The cigenfunctions of Nmay be chosen to be real as its kemel is real. First let us prove that u4
cannot change sign in the domain {2, that is,

u (N () =l Du, L, xy €

In fact, in the opposite case, by virtue of the continuity of the function 4 (x), there would be neigh-

borhoods U(xq,7) € 2 and U(yy, ) € 2 such that
lur (D)ur (M) > u (Dus (), x € Uxo, 1) € 2,y € U(yo,7) € L2,
And so, by virtue of

L%u—a%@—w&>a %

We obtain
(N2 |y, luy I)

| || f fffd(x— §)eqg (€ —y) défu () [|ug () ldxdy
Uq

||u1||

f_ffdu—a%@ w&w@MUMm%=% ®)

||u1||
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u?is the smallest characteristic number of N2 and u; is the eigenfunction corresponding to u?, i.e.
w, = uiN?u,.
Therefore, by the variational principle we have

1 (N*f. )
S 5 S LU Ay 9
,uf SUPrer2(n) ||f| 2 €©)

This means that the strong inequality (8) contradicts the variational principle (9).

Now we shall prove that the cigenfunctionu,(x) cannot become zero in (2 and therefore can be
chosen positive in 2.

In fact, in the opposite case there will be a point x; € {2 such that

s (o) = f f ea(to — O)ea(€ — ) dEw ()dy = 0

form which, by virtue of the condition (7), the contradiction follows: u, (y) = 0,Vy € 0.

Since u4 is positive it follows that y; is a simple. In fact, if there were an eigenfunction %7 linearly
independent of ©; and corresponding to y, then for all real ¢ linear combination u; + ci] also would be
eigenfunction corresponding to i, and therefore, by what has been proved, it could not become zero in (2.
As c¢ is arbitrary, this is impossible.

Finally, we show that the other eigenfunctionu;, i = 2,3, ..., are sing changing in £2. If u; = 0,i #
1,oru; £0,i #1then
f uu; #0
2

as U4 (x) > 0 in £2. This contradicts the orthogonality of the eigenfunction family {u;}of N.

Lemma 1 is proved.

Let 2 be a bounded measurable set in R%. Its symmetric rearrangement 2*is an open ball originated
at 0 with a measure equal to the measure of 2, i.e. |2*] = |2|. Let u be a nonnegative measurable
function in (2, in the sense that all its positive level sets have finite measure,

Vol({x|u(x) > t}) < oo, (Vt > 0).

In the definition of the symmetric-decreasing rearrangement of u can be used the layer-cake

decomposition [7], which expresses a nonnegative function « in terms of its level sets as

o0

u(x) = fX{u(x) > t}dt
0
whereX is the characteristic function of the corresponding domain.
Definition 1. [7]Let u be a nonnegative measurable function in (2. A function

u*(x) = fX{u(x) >t} dt
0
is called a symmetric-decreasing rearrangement of a nonnegative measurable function u.
By Lemma 1 the first characteristic number pq of the operator N is positive and simple; the
corresponding eigenfunction w4 can be chosen positive in (2. Recalling Riesz” inequality [7] and the fact
that £;(x — y) is a symmetric-decreasing function, i.¢. &; and ;" have the same formula, we obtain

| [ w0 eatr = pmeidydx < | | wroeate =y w @y (10)
.{2 .{2 * *
In addition, for each nonnegative function u € L?(2) we have
Therefore, from (10), (11) and the variational principle for y, (2*), we get
1 () = Jolua ()| 2dx Sl (0|2 dac
y =

[0 It 08—y ()dydx = [, [ (N8 - (Odydx —
J9(x)|2dx
inf fﬂ = w1 (2.
veL@) [, [ . 9(y)0(x — y)9(x)dydx
Theorem 1 is proved.
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3Krahn-Szego theorem. In this section we are interested in minimizing the second characteristic
number of the Newton potential N among open sets of given volume. As in case of the Dirichlet Lapla-
cian, the minimizer is no longer one ball, but two!

Theorem 2.The minimum of t,(2) among bounded open sets of R® with given volume is achieved by
the union of two identical balls.

Similar result for the Dirichlet Laplacian is called the Krahn-Szego theorem. See, for example, [1] for
further references.

Proof of Theorem 2. Lemma 1 says that among ¢igenfunctions of N only the first eigenfunction is
positive

u(x) > 0,vx € 0.

Therefore,
uy(x) > 0,vx € N* c 0,0* # {0}.
u(x) <0,vx € 1~ c 2,0 # {0}.
We have
w3 = 1 (D) [ 2= Y )y, x € 0
o)
Taking
trn _ fu,(x)in 2™,
Uz (%) = {0 otherwise, (12)
and
oy _fuy(x)inQ-,
Uy (%) = {0 otherwise,
we obtain
w00 = 1 () [ eale =3Oy + @ | el -z @Iy, xe
o) 0-
Multiplying by u5 (x) and integrating over 2+ we get
| teorax =@ | w0 | e -yt Gidyax +
o+ o+ o+
@ [ W@ | ab-uidyds,  xea
o) 0-

The second term in the right hand sight is negative as we know sign of all integrants. Therefore, one

has
| meordx i@ [ we | e - yut @iy
o+ o+ o+

that is,

[ lug (01 2dx
[ 3 @) [, eax — y)u ()ddydx
From here by using the variational principle one obtains
[ 1901 2dx
Jor 9x) [4 £4(x = Y)O(Y)dydx

[ g () 2dx

< p2(2)

t2(27) = inf ez

< < u, ().
3 (0 ] fa@ — )3 Ddydx 2
Similarly, we get
w27 < ().
So we have
1 (2F) < pp (D), 11 (27) < pp (). (13)
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We now introduce B*and B, balls of the same volume as 2% and 27, correspondingly. According
to Theorem 1, we have

(BT < py(29), w(B7) < (7). 14

Let us introduce a new open set 2 defined as 2 = B* U B™. Since 2 is disconnected, we obtain its
eigenvalues by gathering and reordering the eigenvalues of B*and B~ . Therefore,

12 () < max(p; (B, i1 (B7)).
According to (13) and (14) we have

12(2) < max(ps (B, i1 (B7)) < max(p; (271), 11(27)) < p12(02).

This shows that, in any case, the minimum of yu, is to be sought among the union of balls. But, if the
two balls would have different radii, we would decrease the second eigenvalue by shrinking the largest
one and dilating the smaller one (without changing the total volume). Therefore, the minimum is achieved
by the union of two identical balls.

Theorem 2 isproved.
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HBbIOTOH MOTEHIUAJIBIHBIH EKTHIII CAMMATTBIK CAHBI JKANHJIA
. Cyparan
KP BFM Maremarnka »xoHE MAaTEMaTHKAJIbIK YITIICY HHCTUTYTHI, AnMartsl, Kazakcran

Tipek co3nep: Jlannac-berbTpamu onepaTopsl, OTKI3TIII IIEKAPA, KUCHIH/IBI IEKTIK ECEIL.

Annoramus. JXymeicta HBIOTOH NOTCHUHANBIHBIH CKIiHIN CHOATTHIK CAHBI OCPLATCH KoJICMIL RY-meri
IICHEITCH AINBIK JKUBIHIAP apachlHAA ©31HIH €H a3 IaMachiH Oip-KeJKi €Ki MmapAbH OIpTyiHAc KaOBLTIAWTHIHBIH
Jonenaciimiz. HproToH moTeHImansl JlamiacHanHbIH JTOKATbAbl EMEC IMEKAPANBIK cCeDIHE KAaTacThl OOIBII TaOBI-
JMATHIHIBIKTAH AJNBIHATBIH HOTWXKCIACP JIATUTACHAHHBIH JTOKAJBIBI CMCC MICKAPANBIK €CCOIHC CKIHON MCHIMIKTI
MOHIHEIE THICTI.

HBIOTOH NOTEHIHUAJBIHBIH EKTHIII CUIIATTBIK CAHBI )KAﬁHI[A
. Cyparan
HHCTHTYT MaTeMaTHKH 1 MaTeMaTtHueckoro Moaeuposanus, MOH PK, AmvaTtsr, Kazaxcran

Tipek co3nep: Jlannac-berbTpamu onepaTopsl, OTKI3TIII IIEKAPA, KUCHIH/IBI IEKTIK ECEIL.
Annoramus. XXymbeicta HEIOTOH NOTCHIHATBIHBIH CKiHINI CHITATTHIK CAHBI OCPLITCH KOICMIi RY-neri menen-
TCH aIIBIK KUBIHAAP APAChIHAA O3iHIH €H a3 IMaMAachIH Oip-KenKi eki mapapH OipryiHae KaOBLTIAHTHIHBIH J2IICI-
nmeiimi3. HeroToH moTeHumansl JIamIacHAHHBIH JIOKATBABI CMCC IICKAPAIBIK ¢CeOiHC KaracTel Oombim TaObLIa-
THIHABIKTAH ATBIHATHIH HOTIOKSIICP JIammacHaHHBIH JIOKAIBIB CMEC MMCKAPAIBIK ¢CCOIHE CKIHII MCHINIKTI MOHIHEC
THICTI.
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