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Abstract. The article studies one method of numbers generation. For this new method we define and study sets
of so called m-digitaddition and m-self positive integers. In addition, we introduce a stationary number term for the
mentioned operation and provide a full description of the set of stationary numbers under some conditions.

1. Introduction. In his book “Time Travel and Other Mathematical Bewilderments” [1] famous
American science writer Martin Gardner writes about one Indian mathematician D. R. Kaprekar, who
discovered one remarkable set of so called digitaddition numbers. Let us choose any positive integer # and

denote the sum of its digits by S (n) The number K (n) =n+S (n) is called a digitaddition and the

chosen number # is its generator. For example, if we choose a number 53, then its digitaddition is
53+5+3=061.

A digitaddition may have more than one generator. The least digitaddition with two generators is
101, it is generated by 91 and 100. The least digitaddition with tree generators, 10" +1, is generated by
10,107 -99, 10" —108 . The least digitaddition with four generators discovered by Kaprekar, 10" +102

, has 25 digits. He managed to find the least digitadditions with 5 and 6 generators as well.

Positive integer that has no generator is called a self number. An article in the American journal «The
American Mathematical Monthly» of 1974 showed that there exist infinitely many self numbers, but they
are far less frequent than digitadditions. There are only 13 self numbers in the first hundred: 1, 3, 5, 7, 9,

20, 31, 42, 53, 64, 75, 86, 97. A million, i.c. 10°, is a self number and the next power of ten self number
is 10'°. Non-recursive formula for self numbers is yet to be discovered.

K (n) , basically, is a new number, generated by # with the use of simple and natural function.

2. Definitions. Let 1 = {O, 1, ..., 9} be the set of decimal digits and let N be the set of positive
integers. If a€ N | then a can be expressed as

a=a, 10" +a, , 1072+, .+, - 10+,

where @, ; #0 and o, €/ (i=0,1,.., k—1). We will denote a as a =(o,_,,a,_,,...,a,) and call
number k =d (a) its rank, or simply the number of digits. By definition, 10" <a <10* 1.

Let s (a)=a, , +..+a, bethe sum of a’s digits. The number

a=(cy ... o) =010 + 410" +..+¢y, .
will be called backward to a. Some of a ’s first digits can be zeros, thus 4 (a)<k.Ifa= a then a

is called symmetrical.
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Kaprekar was studying the sum of a number and its digits: d+sS (Cl) .If we add @ to that expression it

becomes symmetrical: d+S (Cl) +d. That expression is greater than a and always divisible by 3, thus it
seems logical to consider only a third part of it:

1 N
M(a)=—(a+s(a)+a) .
(a)=3(a-+5(a)+4)
We have just built a quite natural and simple procedure for generating new numbers: ¢ — A7 (a) .

Following the example of Kaprekar, ar (a) will be called an m-digitaddition with an m-generator a.

Numbers without m-generators will be called m-self.

If we denote the set of all m-self numbers by £ and the set of all m-digitadditions by G, then

N=GUE.

3. m-digitadditions. We’ve already said that digitadditions can be found more frequently than self
numbers. In our case the situation is completely different. Thus, among the first thousand there’re 773
m-self numbers and 227 m-digitadditions. Among the second thousand there’re 944 m-self numbers and
only 56 m-digitadditions. Using a simple C'++ code all the m-digitadditions in range from 1 to 10° were
found. Their number turned out to be 15840.

Let’s denote by g, the least m-digitaddition that has exactly » m-generators. From the data generated

by a computer program we created the three following tables.

r 1 2 3 4 5 6 7 8 9
g, 1 4 8 16 20 24 28 32 36

Wecanseethat g~ — g =4 fori=35,6,7,8.

r 10 20 30 40 50 60 70 80 90
g, 334 1001 1335 1669 2003 2337 2671 3005 3339
In this table g0~ =334for j=20,30,40,50,60,70,80 .
r 100 200 300 400 500 600 700 800 900
g, 66670 100004 133338 166672 200006 233340 266674 300008 333342

Here we have ¢,

- g, = 33334 for /=100,200,300,400,500,600,700,800 .

4. m-self numbers. The following facts were found by studying all the m-self numbers from 1 to 10°%:
a) numbers in the form 107 for p=1, 2, 3, 4, 5, 6 are m-sclf,
0) numbers written with the same digit, save 5555, are m-self;

in particular, 11, 111, 1111, 11111, 111111, 33, 333, 3333, 33333, 333333, 99, 999, 9999, 99999,
999999 are m-self;
B) numbers in forms (¢ 000), (0000), (700000)f0r o, 8.y € {2. 3, 4, 5. 6. 7. 8, 9}are m-self.
The amount of m-self numbers among the first million is 984160.
For every k€N we denote by N,. G,» E, the set of all the k-digit numbers, the set of k-digit

m-digit additions and the set of k-digit m-selves respectively. Here we have N, =G, U E, .

5. Stationary numbers. If @ € N and , = s (a) then o is called stationary. Numbers 1, 2, 3, 4, 5,

6,7, 8,9, 12, 24, 36, 48, 102 happen to be stationary. It’s clear that stationary number is always m-

digitadditon, since its m-generator is it itself. Every stationary number d satisfies the equation

numbers less than 10°.

Proposition 1. Let 1 <k <6, then

2a=&+s(a)

By F,.k =1 we’ll denote a set of k-digid stationary numbers. We will find all the stationary
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Fi={12,3,4,56,7,8.9}, F,={12,24,36,48 }, F, = { 102,204,306, 408 }.
F, ={1002, 2004,3006, 4008, 1372, 2374, 3376, 4378, 1743, 2745, 3747, 4749 }
F; ={10002, 20004, 30006, 40008, 17043, 27045, 37045, 47049 }

Fy ={100002, 200004,300006, 400008, 170043, 270045,370047, 470049 }.
By looking at the sets 7, and F, one can deduce an analogy to build some stationary numbers for
k>T7.
Proposition 2. For any k >4the following eight numbers are stationary: ¢,, = (¢ 0.0 ),
k-2

a:i,ﬂ:2i,1£i£4,ej)k:[77 M49],y:],9=2]+1,13js4.

k-2
Proof. Proposition can be easily proved by plugging the values into equation (1).
Let H, = {ci)k;ej)k} .We have i < F,,but for k >7 the set F, can hold additional numbers,
not lying in A, . Denote ¥, \H, =V, for k>7  thenwe get H, UV, =F,.
Let a = (o, , ... @, )s o,_, = 0. The equation (1) writes as follows:
20,105 4 420,107 + 2,10 + 2, = 2a, 10" 4 v, 102 4+, , 10+ 2a,, +s(a) (2)
Wecanseethat 1 <o, , <4 and o, = 2¢¢, , OF &, =20, , +1.Let
10c, , +a,  +s(a)=20a, +2a,+A. (3)
Then Azllakfz+20{k71—19a1—0{0+(otk73+...+ot3) 4)
The definition of A and equation (2) imply that A =7-10, where /=-1, 0, 1, 2..... After plugging
the expression (3) into equation (2) and dividing (2) by 10* we get
20, 1077 420, 100 42,10+ 420, =, - 1077 4o - 10+, - 1077+ 4+ (3)
Next we find the variables by pairs: { o, |, o, } first,then { o, , o, } and so on.
Proposition 3. Let k>7, A=[-10, where —1</<9. For the pair {¢, , o, } we have 19

following possibilities:
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Proof. From the equation (5) we have the following systems of equations that contain variables o, ,

and o, :

D 2a, ,=a, 5) 20, ,=10+a,
20, =a, 5 +1 2o, =at, ,+1

2 2a, ,=a, 6) 20, ,=10+a,
2, =c, ,+1+10 2, =, ,+1+10
2, ,tl=a, 7 20, ,+1=10+a,
20, =a, 5 +1 2, =0, ,+1
2, ,t1=a, $) 20, ,+1=10+a,
o,=a, ,+1+10 2, =, ,+1+10

By solving those systems we can get all the aforementioned solutions §«, ., o, }. Theorem 3 is

proved.
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Thus, we found all the pairs {«, ., «, }. Then we will find the pair {», ,,«,} and so forth. For
every of 19 possibilities for the pair { o, ., o, } we must solve 4 systems of equations to find
{a,_,. a,}. Those 19 possibilities all fall into one of the following 4 types, such that all the solutions of
the same type lead to the same values of {o, ,. o, }:

T, ={2a, ,=a,(mod 10) and «, < 4} includes 3, 6, 9, 14 solutions,

7,={20,,=a,(mod 10)and o, > 5 } includes 1, 7, 12, 16, 18 solutions,

T,={ 2, ,+1=ct,(mod 10) and «, < 4} includes 4, 8, 13 solutions,
1,

4

={ 2, , +1=cr,(mod 10) and o, » 5 } includes 2. 5, 10, 11, 15, 17, 19 solutions.
In case of 7, we get o, , =0, o, =0. A pair {0, 0} also falls into 7, giving the same values

@, ;=0, o, =0 again and so on. Thus, in 7, wehave o, , =, ,=..=a, =2, =0.

Incase of 7, or 7', we get o, , =6, o, =3. Apair {6, 3} fallsinto 7, aswell, giving o, ; =6,

k-5

o, =3 again and so forth. This sequence leads to contradiction in the middle of Q. Thus, cases 7, and 7,

give us no solutions.
In case 7, we get o, ,=9,0,=9. A pair {9, 9} is also in 7,. And thus, in 7, we have

o, , =0, s=.=0,=0,=9.
Shortly speaking, now we must consider possibilities 3, 6, 9, 14 (type 7, )and 2. 5, 10, 11, 15,17, 19
(type T, ). Let’s start from possibility number 2.
Proposition 4. Let k=7, A=-100 and 4=(a, , a, , 9..9 aya,) . Then the set of stationary
f—4

numbers is V; ={ i, =(cr499998 ), where ot =i, p=2i, 1<i<4 )
Proof. From the statement we have
A=-100=11c, ,+2¢;, , —190; —c, +9(k—4) . (6)
Since o, , =9 >5 we have the following systems of equations to consider.
{2%2 +1=¢, 5 {205“ +l1=a, +10
2, =«
By plugging equations of the first system into (6) we get 3«, , =k +5. Considering the fact that

2a, ,+1=a,

k>7 and o, ,<4 we can find the solution: o, , =4, o, =7, k=7 . Next, o, =20, ,, where 1<, <4
and we get the stationary numbers 4, 1<i<4.

In case of the system 2) there are no solutions. Theorem 4 is proved.

Solutions to 10 other possibilities are similar to the considered one, so we will just provide (without
proof) the following three theorems.

Proposition 5. In cases 6, 9, 14 and 10, 15, 17, 19 no solutions can be found.

Proposition 6. Let A =0 . Then the set of stationary numbers for k£ > 7 is identical to the set [‘4

Proposition 7. Considering cases 5 and 11 we can get the following sets of stationary numbers:

V., :{ (a039 970ﬁ) tie =1, f=2,1<i<4},

S (a049 9 700).rne =1, f=2i,1<i<4}

4

e (a149 92ﬂ) rae X =1, =2, 1<i<4},

Zss = {155 (24 9 9. 4pP),rre =1, p= 2i,1<i<4 },

5
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Ve ={d, 4 =(a34 9...9 6B).rac =i, f=2 1<i<4},

Vo = i 61 (Ot449 98ﬁ) e =1, ffi= 2l,l<z<4}

57

S =(@549.900) , tne ¢ =1, f=2i+1,1<i<4},
38

ias =(64 9.9 20) tne =1, f=2i+1,1<i<4)},
e

40 (a749 S48, tne =i, f= 2i+1, 1<i<4},

o

Jis=(a849..96f) rne ¢ =1, f=2i+1,1<i<4},

I

WSS:{fi)SS:((x94 9..988),rre 0 =1i, f=2i+1,1<i<4}.
50

¥
{
V46{
o=
o=

Thus, we found all the stationary numbers, when £ >7 and A=/-10>, where —1</<9 |
In the case of £k >7 and A=10 stationary can also be found by the same algorithm. We will
simply provide the results in theorem 8.
Proposition 8. If k>7 and A =10, then all the stationary numbers can be found in the following
sets:
9ins =(003 &,2, 7000) . tae =i, f=2i 1<i<4 }-

110

Gy =(@103 9.9 T020) ,vae =1, f=2i, 1<i<4},

113

116

4,15 =(303 &2706ﬂ),rﬂe a=Ii, B=2i,1<i<4 1,

121
124
127

119
130

=1
{
{ G2y =(@203 9.9 704p) , rne @'=i, f=2i, 1<i<4 },
{
-{

130 =(0403 9.9 7080) . tne ¢ =1, f=2i, 1<i<4}.

122

For every @ with a rank  4(a)<130 we  have A<1100.  Denote
R=1{7,16,43,46,49,52,55,58,61, 118,121,124, 127,130 }, O = {49,52.55 }

Summing up all the results of statements 5_g we can formulate the following theorem.

Theorema 1. Let 7 <k <130, then

a)if ke R, then F, =1, UV,,

O)if keQ,then ¥, =1, UZ UW,,

B)if k¢ (RUQ),then F, =H, .

Let’s show now how to find stationary numbers is a general case.

In case A=1-10"+1,-10° +...+1, -10"", where / < 1, we’ll be able to find the values of pairs
{o, oy b {1, }, ctc. In those cases, where there is a solution, we’ll find the values of

stationary numbers.
For providing advice and guidance, and for the encouragement and support, I thank to my supervisor
professor Sava Grozdev.
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HEIMOJABU/KHBIE M-IIOPOX/JIEHHBIE YHCJIA
C. MakbI1mon

KmoueBsie ciioBa: HarypansHbIC yncia, [ Kanpekap, moposkIcHHBIC YHCIA, CAMOMOPOKIACHHBIC THCIIA.

Annotamusi. B pabore paccmarpmBacTcs onuH cmoco0 reHeparmu 4ucel. OTHOCHTENBHO 3TOTO CIocoda
ONpCACILIOTCA W HU3YYarOTCA KIACCHI 71-TIOPOKACHHBIX H 777-CaAMOIOPOKIACHHBIX LCTIBIX IMOJIOKUTCIBHBIX YHCCII.
Taxoke BBOOUTCA MOHATHC HCHOABHIKHOTO YHCIA, U AACTCA OMUCAHUEC MHOXXCCTBA HCIMOABMOIKHBIX YHCC]T TIPH
OTIPC/ICTICHHBIX Y CIOBHAX.

TYPAKTBI M-TYBIHJIAFAH CAHJIAP
C. Makpmmon
Tyiiin ce3aep: Hatypan cannap, J. Kanpekap, TybiHAaraH caHmap, 63iHAIK TybIHIAFaH CaHJap.
AnHotanua. Makanana »aHa CaHIAp KYpacTHIPYIBIH Tarbl Oip omici KapacTeIpsraamel. OCHI OMICKE KATBICTHI
M-TYBIHAAFAH JKOHE M- O3IHIIK TYBIHIAFAH HATYPAJ CAaHAAPABIH KJIACTAPBI AHBIKTATIAAbI skoHE 3epTTeieai. COHBIMCH

KaTap TYPaKThl CAHIAp aHBIKTAMAcCHI Oepiesi skoHe Oenriti Oip mapTTa TYpaKThl CAHAAP >KUBIHBI TAOBIIAIBL.
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