ISSN 1991-346X 2. 2019

NEWS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

PHYSICO-MATHEMATICAL SERIES

ISSN 1991-346X

https://doi.org/10.32014/2019.2518-1726.6

Volume 2, Number 324 (2019), 5 - 8

УДК 539.142

M. Odsuren^{1,*}, A.T. Sarsembayeva ^{2,†}, G. Khuukhenkhuu ¹, S. Davaa ¹, K. Kato ³, B. Usukhbayar ¹

¹School of Engineering and Applied Sciences and Nuclear Research Center,
 National University of Mongolia, Ulaanbaatar 14200, Mongolia;

 ²Department of Physics and Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
 ³Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
 *odsuren@seas.num.edu.mn; †sarsembaeva.a@kaznu.kz

HIGHER EXCITED STATES OF α+α SYSTEM

Abstract. In this work we investigate the higher excited states of α + α system applying the complex scaling method. The low-lying 0^+ , 2^+ and 4^+ states of α + α are measured well but the higher excited states 6^+ , 8^+ and 10^+ of α + α are not available by experimentally and these higher excited states have been barely studied by theoretical approaches.

Keywords: Complex scaling method, alpha-alpha system.

INTRODUCTION

The complex scaling method (CSM) [1-5] has been successfully utilized in the description of resonance states in light nuclei. The theory of the complex scaling was proposed mathematically [2] and it has been extensively applied to the atomic and nuclear physics [6-10].

In this work we investigate structure of $\alpha+\alpha$ system. In particular, we focus on the its higher excited 6^+ , 8^+ and 10^+ states because there is no experimental evidence for those higher states. But its low-lying 0^+ , 2^+ and 4^+ states are experimentally well known. In addition, in this work we apply the CSM and harmonic oscillator wave function in order to calculate both low-lying and higher excited states of $\alpha+\alpha$.

THEORETICAL FRAMEWORK

Complex Scaling Method

In the CSM the relative coordinate is rotated as like $r \rightarrow re^{i\theta}$ in the complex coordinate plane. Therefore, the *Schrödinger* equation

$$\hat{H}|\psi\rangle = E|\psi\rangle \tag{1}$$

is rewritten as

$$\hat{H}(\theta) |\psi^{\theta}\rangle = E^{\theta} |\psi^{\theta}\rangle, \tag{2}$$

where $\hat{H}(\theta)$ and ψ^{θ} are the complex scaled Hamiltonian and wave function, respectively. The θ is scaling angle being a real number, $U(\theta)$ operate on a function ψ^{θ} , that is

$$\psi^{\theta} = U(\theta)\psi(r) = e^{\frac{3}{2}i\theta}\psi(re^{i\theta}). \tag{3}$$

The eigenvalues and eigenstates are obtained by solving the complex scaled *Schrödinger* equation Eq.(2). The eigenvalues of resonance states are found as $E^{\theta} = E_r - i\Gamma_r/2$, where E_r is resonance energy and Γ_r is the width of resonance. More detailed explanation of the CSM is given in Refs.[1-2].

Two body interaction

For the alpha-alpha system the Hamiltonian is expressed as

$$\hat{H} = \sum_{i=1}^{2} \hat{T}_{i} - \hat{T}_{c.m.} + V_{\alpha\alpha}^{Nucl}(r) + V_{\alpha\alpha}^{Coul}(r).$$
(4)

Harmonic oscillator wave function for radial part is

$$\varphi_{nl}(r) = N_l^n \left(\frac{r}{b_F}\right)^l L_n^{l+\frac{1}{2}} \left(\left(\frac{r}{b_F}\right)^2\right) \exp\left(-\frac{1}{2b_F^2}r^2\right) Y_{lm}(r),$$
 (5)

here $L_n^{l+\frac{1}{2}}$ are Laguerre polynomials for the angular momentum l and N_l^n denotes the normalization

constants as given by
$$N_l^n = \left\{ \frac{2\Gamma(n+1)}{b_F^3\Gamma(l+n+\frac{3}{2})} \right\}^{1/2}$$
. The size parameter of relative motion of two alpha-

cluster b_F is taken as 0.967 fm which corresponds to a single particle size parameter $b_0 = 1.3975$ fm employed to fit the observed r.m.s. radius of ⁴He [11-12].

Alpha-alpha potential

The $\alpha+\alpha$ potential is constructed by the folding approach for the effective nucleon-nucleon interaction by the Schmid-Wildermuth [13-14] potential. An effective two-nucleon force is written as,

$$v_{ij} = V \{ W + BP_{\sigma}(ij) - HP_{\tau}(ij) - MP_{\sigma}(ij)P_{\tau}(ij) \} \cdot \exp(-\mu r^2)$$
(6)

where $P_{\sigma}(ij)$ and $P_{\tau}(ij)$ are the spin and isospin exchange operators. In this work we employ the Schmid-Wildermuth potential as a nucleon-nucleon force, which is given by following parameters:

$$V = -72.98 \text{ MeV}; \ \mu = 0.46 \text{ fm}^{-2};$$

 $W = M = 0.4075; \ B = H = 0.0925.$ (7)

The folding potential of the alpha-alpha system is obtained from such a nucleon-nucleon force and also the Coulomb force.

Its explicit form is

$$V_{\alpha\alpha}^{Nucl} + V_{\alpha\alpha}^{Coul} = 2X_D \left[\frac{2v_{\alpha}}{2v_{\alpha} + \frac{3\mu}{2}} \right]^{\frac{3}{2}} V \exp \left(-\frac{v_{\alpha}\mu}{v_{\alpha} + \frac{3\mu}{4}} r^2 \right) + \frac{4e^2}{r} erf \left(r\sqrt{\frac{4}{3}}v_{\alpha} \right), \tag{8}$$

where $X_D = 2.445$ and erf(x) is the error function. We use a harmonic oscillator constant $v_{\alpha} = \frac{M\omega}{2\hbar} = 0.2675$ fm⁻² which is obtained by using $r_{rms} = 1.63$ fm of the alpha-cluster.

In Eq. (8) the simplified notations can be applied:

$$V_0 = 2X_D V \left[\frac{2v_\alpha}{2v_\alpha + \frac{3\mu}{2}} \right]^{\frac{3}{2}},$$

ISSN 1991-346X 2. 2019

$$\beta = \frac{v_{\alpha}\mu}{v_{\alpha} + \frac{3\mu}{4}}$$

$$\alpha = \sqrt{\frac{4}{3}v_{\alpha}}.$$

RESULTS

Complex Scaling Method

Figure 1 displays the complex energy eigenvalues of 4^+ state which is obtained by diagonalization of Eq.(2) with $N_{\rm max}=50$ for $\theta=13^{\circ}$. We can see all energies are on lines of $\arg(E_0)=2\theta$ which correspond to the branch cut of the complex energy plane. When we take larger values of θ , we observe isolated energy points, being resonance states, whose positions are almost unchanged by varying $\theta \ge \frac{1}{2} |\arg(E_{\theta}^R)|$.

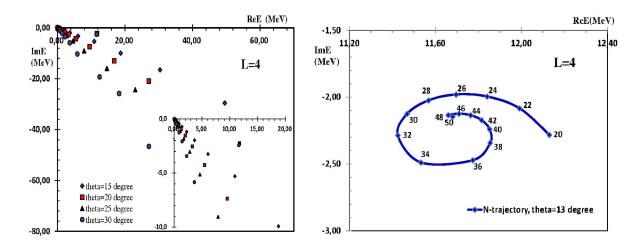


Figure 1. The resonance eigenvalues at $J^{\pi}=4^+$ for the different θ

Figure 2. *N* -trajectory at $J^{\pi}=4^+$. The folding potential and harmonic oscillator wave function are used

In Fig. 2 presents the eigenvalues of 4^+ state which is calculated with $N_{\rm max}=20\sim 50$. This is called the $N_{\rm max}$ -trajectory. As the number of basis states is increased, the $N_{\rm max}$ -trajectory shows the spiral convergence. The radius of curvature of the spiral depends on the values of θ and b_0 . In calculation of the $N_{\rm max}$ -trajectory, we fixed to $\theta=13^0$ and $b_0=1.3975$ fm for 4^+ . The computed decay widths for the experimentally unknown 6^+ , 8^+ and 10^+ higher states are rather large, however, they can be recognized as resonances on the complex energy plane.

Table I - Experimental and calculated resonance energies with corresponding decay widths of $\alpha+\alpha$ system

States	Experimental data [12]		Present work	
	$E_r(MeV)$	$\Gamma_r(MeV)$	$E_r(MeV)$	$\Gamma_r(MeV)$
4 ⁺	11.35	~3.5	11.7	4.4
6+	-	-	30.5	36.8
8+	-1	-	51.6	120
10 ⁺	=0	-	70.0	180

For the case of 6⁺, 8⁺ and 10⁺ states, there are no measured data, however, we calculated a resonance energy with a broad decay width applying harmonic oscillator wave function. The calculated results are given in table 1.

SUMMARY

Positions and widths of low-lying and higher excited states of ⁸Be are calculated by using the CSM and the two-body model. The result of recent calculation indicates that reasonably good agreement with measured data for 4⁺ state. It is remarkable that the energies with decay widths of the higher excited 6⁺, 8⁺ and 10⁺ states are calculated.

М. Одсурен 1,* , А.Т. Сарсембаева 2,† , Г. Хуухенхуу 1 , Даваа С. 1 , К. Като 3 , Б. Усухбаяр 1

 1 Инженерлік және қолданбалы ғылымдар институты, ядролық зерттеулер орталығы, Моңғолия Ұлттық Университеті, Улан-Батор 14200, Моңғолия;

 2 Физика-техникалық факультеті, Әл-Фараби атындағы ҚазҰУ, 050040, Казақстан; ³Ядролық реакция деректер орталығы, Ғылым факультеті, Хоккайдо университеті, Саппоро 060-0810, Жапония

α+α ЖҮЙЕСІНІҢ ЖОҒАРҒЫ ҚОЗҒАН КҮЙЛЕРІ

Аннотация. Бұл жұмыста кешенді масштабтау әдісін қолдана отырып α + α жүйесінің жоғары қозған күйлері зерттелді. α + α -ның төмен 0^+ , 2^+ және 4^+ күйлері өлшенген, бірақ α + α жүйесінің 6^+ , 8^+ және 10^+ жоғары қозған күйлерінің эксперименталды мәндері белгісіз болғандықтан, бұл жоғары қозған күйлер теориялық тәсілдермен есептелінді.

Түйін сөздер: кешенді масштабтау әдісі, альфа-альфа жүйесі.

 1 Школа инженерных и прикладных наук, Национальный университет Монголии, Улан-Батор 14200, Монголия:

 2 Физико-технический факультет, КазНУ им.аль-Фараби, 050040, Казақстан; 3 Центр данных по ядерным реакциям, Факультет науки, Университет Хоккайдо, Саппоро 060-0810, Япония

ВЫСОКИЕ ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ α+α СИСТЕМЫ

Аннотация. В данной работе мы исследуем высокие возбужденные состояния $\alpha + \alpha$ системы, применяя метод комплексного масштабирования. Низколежащие 0^+ , 2^+ и 4^+ состояния $\alpha+\alpha$ системы хорошо известны, но высокие возбужденные состояния 6^+ , 8^+ и 10^+ $\alpha+\alpha$ системы не доступны экспериментально, поэтому эти высокие возбужденные состояния были изучены теоретическими подходами.

Ключевые слова: метод комплексного масштабирования, альфа-альфа-система.

REFERENCES

- [1] Y. K. Ho, Phys. Rep. 99, 1983), pp. 1-68.
- [2] J. Aguilar, J. M. Combes, Commun. Math. Phys. 22 (1971) 269; E. Balslev, J. M. Combes, ibid. 22 (1971) 280.
- [3] S. Aoyama, T. Myo, K. Katō, K. Ikeda, Prog. Theor. Phys. 116 (2006) 1.
- T. Myo, Y. Kikuchi, H. Masui, K. Katō, Prog. Part. Nucl. Phys. 79, 1, 2014 S. Saito, Prog. Theor. Phys. 40, 1968, pp.893-894; 41, 1969, pp.705-722; Prog. Theor. Phys. Suppl. 62, 1977, pp.11-89.
- [6] A. T. Kruppa and K. Katō, Prog. Theor. Phys. 84, 1990, pp. 1145-1159.
- [7] M. Odsuren, K. Katō, M. Aikawa, T. Myo, Phys Rev C.89. 034322, 2014
- [8] M. Odsuren, K. Katō, M. Aikawa, Nucl data sheets 120, 2014, pp. 126-128
- [9] M. Odsuren, Y. Kikuchi, T. Myo, M. Aikawa, and K. Katō, Phys. Rev. C 92, 014322 (2015).
- [10] Sarsembayeva, A. T.; Sarsembay, A. T.; Myagmarjav, O. Statistical analysis of x-ray solar flare registered on September 10, 2017. News of the National Academy of Sciences of the Republic of Kazakhstan-series Physico-Mathematical, Vol. 2. - Issue 318. 2018. P.5-8.
- [11] M. Nassurlla et al. News of the National Academy of Sciences of the Republic of Kazakhstan-series Physico-Mathematical, Vol. 6. - Issue 322. 2018. P.15-21. ISSN 2518-1726, https://doi.org/10.32014/2018.2518-1726.12
 - [12] M. Odsuren, Y. Kikuchi, T. Myo, G. Khuukhenkhuu, H. Masui, and K. Katō, Phys. Rev. C 95, 064305 (2017).
 - [13] E. W. Schmid and K. Wildermuth, Nucl. Phys. 26, 1961, pp. 463-468.
 - [14] F.Ajzenberg-Selove, Nucl. Phys. A490,1988, pp.1-225.