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ON PROJECTIONAL ORTHOGONAL BASIS
OF A LINEAR NON-SELF -ADJOINT OPERATOR

Abstract. In this paper we study spectral properties of a linear non-self-adjoint operator with an internal

symmetry of the form:
PL=1L'P, LQ = QL%

where P* = P, Q" = @ are orthogonal projections, L* is an operator, adjoint to the operator L in the Hilbert space H.
It is shown that a spectrum of such operator is real. In the case of a discrete operator, with a complete system of
eigenvectors and associated vectors, the projections of eigenvalues and associated vectors of the operator L and its
adjoint operator form an orthonormal basis. A class of Sturm-Liouville operators with such symmetry is found,
moreover, it is found that the characteristic function of such an operator factorizes. An illustrative example is
provided.

Keywords: Lincar non-self-adjoint operator, real spectrum, basis, root vectors, completeness, theory of electric
signals, plasma theory, discrete operator, invariant subspaces, root subspaces, completely continuous operator,
eigenvectors and associated vectors, internal symmetry, projection, resolvent.

1. Introduction. The aim of the paper is to study the spectral properties of a certain class of linear
non-self-adjoint operators . with a real spectrum that have the following internal symmetry

2.

PL=1L'P, LQ=QL;P"=P, Q' =4,

where L is a linear operator with a domain D(A), that belongs to the Hilbert space H, and P and Q are
orthogonal projections, defined in this space.

We will assume that the Hilbert space H is separable.

We consider a completely continuous operator T, acting in the separable Hilbert space H. We denote
by R; the following operator

(T—AD™L (1.1
The set of points of the plane A, for which the operator (1.1) is everywhere defined and bounded, is
called the resolvent set, and its complement is called the spectrum of the operator 7. It is known that the
spectrum of the completely continuous operator 7' consists of at most a countable number of points

A gy Agy s Ay oo

which can have a limit point only at zero. If the space H is infinite-dimensional, then zero is always a
point of the spectrum of the completely continuous operator. Each non-zero point of the spectrum A, of
the completely continuous operator 7' corresponds to a finite-dimensional invariant subspace K, which is
defined as the set of elements of /, canceled by some power operator T — A I:
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(T —AD"f =0 (12)

The subspace K is called root subspace. Dimension of the root subspace, corresponding to the point
of the spectrum A, we will denote by m;.

In each of the root subspace K, since it is finite dimensional, it is possible to choose a basis, in which
the transformation is written by a Jordan matrix. This basis consists of several chains of equalities:

fiv 21 o fR11J fiz: fa2s o) fRzz»---u' f1q»f2q»---» quq- (L.3)

Each chain forms a basis in one of invariant subspaces on which this root subspace K splits. For
elements of each chain the following equalities hold:

Tfir = Ashie, Thar = Asfor + fizo o) TfR-,_—‘L' = ASfR-L—‘L' * fR-,_—‘L'

The first element of the chain is an eigen element of the operator T, corresponding to the eigenvalue
A, and the others are so-called associated elements.

In the paper we consider linear non-self-adjoint operators, acting in the separable Hilbert space H and
with a discrete spectrum. The last one means that all points of a spectrum of the operator 4 (with the
possible exception of one) are isolated, and the corresponding them subspaces are finite-dimensional. A
finite-dimensional invariant subspace of the operator A, concerning to a certain point of the spectrum A,
is usually called the root subspace. We will denote it by K.

A root subspace K, can be characterized as a collection of elements f, which satisfy the following

equation at some integer m = 1
A-ADMf =0. (0.1)

As is well known, completely continuous operators, as well as unbounded (for example, differential)
operators that have completely continuous inverse, has a discrete spectrum.

The main problem of the paper is to study the conditions under which a system of finite-dimensional
invariant (root) subspaces of an operator turns out to be a basis in A or in the range of the operator.

Definition 1.1. A system of elements {e, },n = 1,2, ... forms a basis in the space H, if any element
x € H can be uniquely represented in the form of the convergent series

n=1

Every basis is a complete uniformly minimal system. However, a complete minimal system may not
form a basis in space. For example, the trigonometric system eq(t) = 1, e,,_1(t) = sinnt, e,,(t) =
cosnt, (n=1,2,..) is complete and uniformly minimal system in the space C(—m, @), but does not
form basis there.

Definition 1.2. System {e;}, { = 1,2, ... is called an unconditional basis in the space H if it remains a
basis for any permutation of its elements.

Let T be a linear bounded operator, acting in the space H and have a bounded inverse. If the system
{e;} is a basis, then the system {Te;} is also a basis. If {e;} is unconditional basis, then and {Te;} is
unconditional basis.

In the Hilbert space H, any orthogonal basis is unconditional. It turns out that any unconditional basis
in the Hilbert space can be represented in the form {Te;}, {e;}is an orthogonal normed basis. Such bases
were called Riesz bases. They can be characterized by the following properties: there exist positive
numbers m and M such that for any x € H

e} [0}
me ) el < Ixl? < M- ) [ e)l
i=1 =1
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Completeness is a necessary condition to have a basis. We clarify that a system of finite-dimensional
invariant subspaces of a certain operator is called complete in a Hilbert space H, if any element h € H can
be approximated with predetermined accuracy by the norm of a finite linear combination of elements,
cach of which belongs to one of the invariant subspaces. It is well known that if some completely
continuous operator is self-adjoint, then the system of its finite-dimensional invariant subspaces is
complete in the range of values of the operator, moreover it forms an orthonormal (after normalization)
basis (in this case the root subspaces turn out to be proper).

In the case of a general completely continuous operator, the completeness may not occur. The
simplest example of this kind is the integration operator

Af =[5 f(©dt, 0<x <1, (0.2)

which acts in the Hilbert system of functions, that are Lebesgue integrable square in the interval [0,1].
Further we will denote this space as L,(0,1). It is casy to verify that the operator (0.2), being completely
continuous, has only a single point of the spectrum — zero and does not have any ecigenvector.
Consequently, it has no finite-dimensional invariant subspaces at all.

In the theory of non-self-adjoint operators in a Hilbert space, questions on completeness and basicity
of systems of root vectors play an important role. For many classes of non-self-adjoint operators,
completeness of system of root vectors has now been studied quite fully. Important results in this direction
are contained in [2] - [11] and monographs [1].

Problems of basicity of root vector systems are investigated much less thoroughly than the questions
of completeness. The basis condition of the root vector system was studied for dissipative operators by
B.R. Mukminov [12], LM. Glazman [13] and A.S. Markus [14], and for weakly perturbed self-adjoint and
normal operators by A.S. Markus [15] and by Visitey and A.S. Markus [16]. The methods, developed in
[12] - [17], make it possible to establish that a system of root vectors of an operator belongs only to the
class of Bari bases [18]. The class of Bari bases is very narrow, and basis property of the system of root
vectors has been established in [12] - [17] with rather strict restrictions on operator.

In [19], a completely new analytical method was proposed for questions on basicity, based on
systematic use of theorems on interpolation by analytic functions. In this case, L. Carleson theorem [20]
on interpolation by bounded analytic functions was used. In this paper, series of theorems are established,
these theorems contain conditions, sufficient and, in some cases necessary, for a system of root subspaces
of an operator in a Hilbert space to be Riesz basis in its closed linear hull. Connection of operator-
theoretic and differential-theoretic considerations was made on basis of the well-known J.fon Neumann
theorem [21] - [22]. Ideas and methods of this paper were continued in the monograph [23].

V.P. Mikhailov [24] and G.M. Keselman [25] proved the Riesz basis property of systems of
cigenfunctions and associated functions of an ordinary n-th order differential operator with strongly
regular boundary value conditions in L,. In the case of irregular boundary value conditions, a system of
eigenfunctions and associated functions of the problem does not form even usual basis in L.

Basicity problem was completely solved only for the Sturm-Liouville model operator

Ly=—-y'(x) =2y, x€(0),
a11y(0) + a1,y (0) + a;zy(1) + a14y'(1) = 0,

az1Y(0) + a5y (0) + azzy(1) + ay,y (1) = 0,
in [26].

In the case when the boundary value conditions are regular, but not strongly regular, the question on
basis property of systems of eigenfunctions and associated functions has not yet been completely solved,
thus, very active research is being conducted in this direction [27] - [31].

Theory of bases has, besides the theoretical value, purely practical value, and is used in the theory of
clectrical signals [32] and plasma [33].




News of the National Academy of sciences of the Republic of Kazakhstan

2. Research Methods.
Lemma 2.1. If a system of vectors {y,,}, n = 1,2, ... is complete in the space H, then systems {Py, }
and {Qy,} are complete in the subspaces H, = PH and H, = QH, respectively, where P and Q are

orthogonal projections given by the formulas
I+S I-S5
P =, e

2 2’
and the operator S has the form Su(x) = u(1 — x), Vu(x) € L?(0,1) = H.

Proof. Let for some element g € H; of the subspace H; the following equality holds:
(g.Py) =0, n=12..

where (-,) is a dot product in the space H, then there exists an element of the space H, such that g = Pf,
consequently,

(Pf,Pyn)=0, (szjyn)=(Pijn)=(gjyn)=0; n=12,
due to completeness of the system {y,, } in the space H we have g = 0, that is required to prove.

Example.
It is known that the system {ei"x},n =0,41,42,...is complete in the space H = L?>(—m, w). We put
that Su(x) = u(1 — x) and

p_1tS _I1-5
2 2
einx+e—inx

then the system wu,(x) = Pe'™ = = cosnx is complete in the space of even functions

2
H, = PH; The system v, (x) = ae™ = i sinnx is complete in the subspace of old functions H, = QH.

Let an operator L be densely defined and have a completely continuous inverse operator L™!. Then a
spectrum of the operator L is discrete and consists of only eigenvalues. Suppose that the following
formulas hold:

PL =L"P, LQ = QL

where P and Q are orthogonal projections, i.c.

P =P, Q" =Q.

Lemma 2.2. If y, is an eigenvector, and ¥, is an associated vector of the operator L, corresponding to
the eigenvalue A,, and the equality Py, = 0 holds, then Py, # 0 and the vector P¥;, is eigenvector for the
adjoint operator L*.

Proof. By assumption of the theorem, we have LYy, — 1,¥,; = K,, - y,, where K, is some nonzero

constant, then
PLy, — A, Py, = K,,Py, = 0,=> L*Py, — A, Py, =0;

If Py, = 0, then 3 = (P + Q)¥y = Q¥ => LQYy; — 1,Q¥ = Ky * Yo

Acting by the operator @ to the both sides of this equality, and taking into account Qy, # 0
(otherwise we have y, = 0), we get

QLQ% - AnQ% = Ky, - Qy, # 0.
Due to the formula LQ = QL*, we obtain
QZL*% - AnQ% =K, Qyn, #0, QL*% - AnQ% = Ky " QYn,

LQ% - AnQ% =Ky, Qy, # 0.
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Thus, due to the formula, %, = Q%,, we get

LQQ% - AnQ% =K, - Qy, # 0.

We obtained a contradiction, since the self-adjoint operator LQ has no adjoint vectors, therefore
Py, # 0 and L*PYy,, = A,,PY,.
Remark. From the equality Ly,, = A,,y,,, when Py,, = 0, we have

L (% + Qyn) =, (% + Qyn); => LQy, = AnQyn; LQ(Qyn) =
] 0
A Q¥ # 0;

1.€. Qy, 1s an eigenvector of the operator LQ.

Lemma 2.3. if to the eigen function y;,, there corresponds a nonzero associated function ¥y, then
Py, = 0 and Py, # 0.

Proof. By condition of the theorem, we have

Ly, = Anyw Yn # 0, L% - An% =Ky Yo K, # 0.

Then acting by the operator P to both sides of the last formula, and using the formula PL = L*P, we
have
PLy, — A,Py, = K,Py,, = 0,=> L*'Py, — APy, = K,,Py,,=>

L"P(|P¥) — A PVy = KnPyn.

If Py, # 0, then P¥, # 0, and the sclf-adjoint operator L*P has an associated vector, which is
impossible, consequently, if to the eigenvector y, there corresponds an associated vector 3, then
Py, = 0, and from the previous lemma it follows that Py, # 0 and the vector P¥,; is eigenvector for the
operator L*.

These three lemmas form the basis of our method.

3. Research results.
Theorem 3.1. If root vectors of the operators L and L* are complete in the space H, and

1) PL = L*P;
2) LQ = QL;
HPE=P, P'=P; Q*=0Q Q" =0,

then spectrum of the operator L is real, and normed projections of root vectors of the operators L and L*
form an orthonormal basis in H, i.¢.

Qn

QI

3 Pon
Pf =) (PF.Po) oot
1Pl

of = ) (@f.Qw)
n=1

where {¢,}, n = 1,2, ... are root vectors of the operator L, {¥,,}, n = 1,2, ... are root vectors of the
operator L*.
Proof. From the formulas 1) and 2), we have

(PLY*=L'P*=L"P=PL;, (LQ)*=Q"'L"=QL" =LQ;

consequently, operators PL and LQ are self-adjoint in the space H.
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If Ly, = ApYy, then PLy, = A, Py,, L'Py, = A, Py, L*P(Pyn) = AnPYn,
consequently, as Py,, # 0, 4,, is an eigenvalue of the self-adjoint operator, therefore it is real.
If Ly, = Ay, and Py,, = 0, then PLy, = A,Py, =0, L(Pyn + Qyn) = A, (P + Q)yn;

LQy, = 1,Qy, and Qy,, # 0,

hence, and in this case A, is an eigenvalue of the self-adjoint operator LQ, thus it is a real value.

By our assumption system of eigen and associated functions {¢,},n = 1,2, ..., of the operator L is
complete in the space H, then the system {P@,},n = 1,2, ..., is complete in the subspace H; = PH (see
Lemma 2.1). Since all eigenvalues A, (n =1,2,...) of the operator L arec real, then spectra of the
operators L and L* are the same.

If Lp, = 4,,¢,, then due to the formula PL = L*P we have PL@, = A,P@,, L*"Po, = 1,Po,,
consequently, the vector Pg,, is eigenvector for the self-adjoint operator L*P.

If Pe,, # 0, then due to Lemma 2.3, there is no associated function.

If Pg,, = 0, then there may be an attached vector @;,, such that

Loy, — 1,0, = K, ¢, K, #0.

Then PLp,, — 1,P@;, = K,,P@,, = 0, moreover, due to Lemma 2.2, we have P@,; # 0.
Operator L does not have associated vectors higher than first order. Indeed, if

then
Pp,=0, P@, +0,
thus
PL®, — A, P&, = K,P@,, # 0, => L*P®, — 1,P®,, = K, P@;, + 0,=>

=> L'P(P§,) — 1,P®, = KPP, + 0.

Consequently, P@,, # 0, and this contradicts self-adjointness of the operator L*P.

Therefore, if the sequence {@,. },n = 1,2, ..., consists of eigen and associated functions of the operator
L, then the sequence {P@,},n = 1,2, ... consists of eigenvectors of the self-adjoint operator L*P, hence it
is a complete and orthogonal system. Rejecting zero elements, if there is any of them, we get a complete
orthogonal system {P@,},n=1,2,.. (cleaned system). Consequently, the system {Pq,/|[P@.ll}
n = 1,2, ... is an orthonormal basis of the space H; = PH, i.c. for any vector f from H the following
decomposition holds

Po,
I1P@nll”

Pf =) (Pf,Pgn)
n=1

2) Let a system of eigen and associated functions {i,,},n = 1,2, ..., of the operator L* be complete in
the space H, then the system {Q,, },n = 1,2, ..., is complete in the subspace H, = QH.

If L*Ipn = Anlpn: then QL*lpn = Aanpn;

LQY, = 4,0, LQ(len) = 4,Q¥n:

If Qy,, # 0, then due to Lemma 2.3, there is not any associated vector. If Qi,, = 0, then maybe there
is an attached vector i, 1.€.

L*% - /11112)71 = Knlpn; K, # 0,
then QL*{Z;;L - ATLQ{Z;;L = K,Q¢¥, =0,=>
LQYy — 2,Q¥,, = 0,=> LQ(Q¥y) — 4,QP, = O,

moreover, due to Lemma 2.2, we have be; # 0.

— §4 ——
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Consequently, in any case the vector Qi, is eigenvector for the operator LQ. Due to self-adjointness
of the operator LQ, eigenvectors {Qy,,} are mutually orthogonal, and according to our assumption and
Lemma 2.1, are complete in the subspace H, = QH, consequently, the system Qu,,/||Qy,|, n = 1,2, ...
forms a orthonormal basis in the subspace H,, i.c.

Qi
QI

of = ) (Qf.Qw)
n=1

4. Discussion.
We consider the model Sturm - Liouville operator in the space L2(0,1).

Ly = —y"(x), x € (0,1), (4.1)

a11Y(0) + a12y'(0) + ay3y(1) + ay'(1) =0,
, ' (4.2)
az1Y(0) + az;y"(0) + az3y(1) + azy'(1) =0,
where a;; (i = 1,2;j = 1,2,3,4) — are arbitrary complex numbers. By A;; we denote minors of the
boundary matrix:
((111 ay; Q13 (114)
Ay Oy G2z G4/
Therefore,
a1 Qg5 ..
A= |a2i a2j|, (i,j = 1,2,3,4). 4.3)
If the following inequality holds
A= A]Z + A]3 + A]4 + A32 + A347‘: 0,

then the operator (4.1) - (4.2) is invertible and its inverse operator L™ ! is completely continuous.
Theorem 4.1. Invertible Sturm-Liouville operator satisfies the following equalities

PL=L*P, LQ = QL*, (44)
if and only if it has the form
Ly =—y"(x), x € (0,1), (4.1)
y(0) + ky'(0) +y(1) — ky'(1) =0,
{(1 — 20y(0) — 2a + k)y'(0) — (1 — 20y (1) — (2L — 2a —K)y'(1) =0, ¢ denoteas (4.5).

its adjoint has the form:
Lz=-z"(x), x € (0,1) 4.2)"

(1-2Dz(0)—-1z'(0)—-(1-2Dz(1)—-1z'(1) =0,

{(1 — k — 2@)2(0) — @z'(0) + (k + 2@)z(1) — (k + @)z'(1) = 0, (4.5

where k = k, | =1 — is a real number, a — is an arbitrary complex number, P and Q are orthogonal
projections given by the formulas:

p= o= (4.6)

-

I+S I-S
2
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where I — is a unit operator, operator S is defined by the formula
Su(x) = u(l — x), vu(x) € L?(0,1). 4.7

Theorem 4.2. If for the invertible Sturm-Liouville operator (4.1) - (4.2) the following formulas hold

a)PL = L*P,
b) LQ = QL*; 4.4)
where
p= ? Q = % (4.6)
Su(x) =u(l —x), vu(x) € L2(0,1), @.7)

then the characteristic function of this operator is factorized as follows:

a)If kI(1 —20) # 0, then

AQQ) = 21 7 —cosE

A
2l—1 siny A A A
. . <kl smE + cosE>;

b) If I =<, then

AQY) = COS?(Ak L, A)-
= 5 cos =+ cos5 )

c)Ifl =0, k+ 0, then

A
2 _ A cosy
A = -2 smE k51n5+ > |
d)Ifl =0, k=0, then
A A
251n7C057
AA(A) = _T;

where k, | — are real coefficients of the boundary conditions (4.5), and the characteristic function A(A)

has the form:
sinA )
A(/l) = Alz + A34_ + A13 T + (A14_ + A32) COS/‘{ + A24_/1 Sln/l,

where Apg are minors from (4.3).
Theorem 4.3. Eigenvalues and eigenfunctions of the boundary value problem

Ly = =y"(x), x € (0,1),

{ y(0)+y(1) =0,
y(0) —y(1) — 2a[y’(0) —y' (D] =0,
consist of two series:

a) /1,(11) = 2nm, y,sl) =K,sin2nnx, n=1,2, ...;
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=12, ..;

b) /1,(12) =(2n+ Dm, y,sz) =B, [2a cos(2nm + m)x + —Sin(znﬂ)m] ,

@n+1)n
where a — is an arbitrary complex number, K,,, B,, — are arbitrary constants.

In this case, the normalized system

{Py?, 022},
forms an orthonormal basis of the space L2(0,1), where

(2) _ __Bn
Py, = @2n+)x

sin(2nr + mx;n=0,1,2, ...

Qz® = (—1)"K,, sin2nmx,n = 1,2, ...
Theorem 4.3". Eigenvalues and eigenfunctions of the boundary value problem
Ltz = —z"(x) = p?z(x), x € (0,1),

{ z(0)—z(1) =0,
z(0) —a[z'(0) + 2’ (1] = 0;
consist of two series:

a) ,u,(ll) =2nm+ 7,

© 1
z,(x) =Apcos(2n+ )m 5%
b) ‘u1(12) =2nm, n=12,..
z, "’ (x) = K,, |[4anm cos 2nm <§ — x) —sin2nw <§ — x)],

where a — is an arbitrary complex number, and K,, — are arbitrary constants.

Moreover, QZ,(ll) =0, QZ,SZ) = (—1)"K,, sin 2nmx, which confirms results of the main Theorem 3.1.

We note that Sturm-Liouville operators of the class, that we studied, are reconstructed in a single
spectrum [34].

In conclusion, the authors thank the correspondent member of the NAS of Kazakhstan M.A.
Sadybekov, who drew their attention to this theme.

AJILIIanaan6aes’, A A Mlanranéaesa’, B.A. Mamian6aii’

"Xamsikapaneik Silkway yausepcuteri, [TTsmvienT k., KasakcTa;
* AMMAKTBIK 0/IeyMETTIK-HHHOBAMAIBIK YHEBepcHTeTi, [IIbMKEHT K., Kasakcram;
3M.O.Ay630B arsraaarsl OHTyCTiK Kazakcran MemiekerTik yHuBepcuteTi, LIsMkeHT K., Kazakcran

CEIBLIKTEIK CBIHAPJIEI OIEPATOPABIH,
OPTOTOHOJIII MPOEKIHASIEIK BA3HCI TYPAJIEI

Annortamus. byn endexre, MpiHaTakH
PL=1L"P, LQ =QL
IMIKi CHMMETPHSACHI 0ap CHI3BIKTHIK CHIHAPIBI ONEPATOPABIH CIICKTPINAIK KAaCHETTEpl 3epTTenai, MyHIarsl P* = P,
Q* = Q —oproroHomal MpPoCKTOpIap, an L'- cerHap omepartop. OHrime [mmbeprriH cemapabenmi H KCHICTITIHAC
00.IBIIT OTHIP.

MyHnmait omepaTopiIapablH CIICKTPI HAKTBHI CAHAAP OCIHAC KATATBHIHBI KOPCCTIAAl, COHOAW-aK MCHIIIKTI >KOHC
OJIAPMEH CHIILIEC BEKTOPJIAP CHUCTEMACHI KEHICTIKTE TOIBIK AWCKPETTI OIEPATOPIAPABIH TYIKI BEKTOPIAPHIHBIH
MPOCKIMAIAPEI MCH OFAH CHIHADP OMCPATOPIBIH TYIKI BCKTOPIAPHIHBIH MPOCKIMIAPHI Oipirin, H KeHIiCTiriHme
OPTOTOHOJT 0A3HC KYPAHTHIHBI KOPCCTLII, OPHHE, OPTAHOPMAIAHFAH COH,

ITypmM-JInyBHIT ONEPAaTOPIAPBIHBIH IMIIHEH OCBIHAANH CHMMETPHACH 0ap OMepaTopiap KiIackl O8ilm aabIHIbL.
MyHzaal onparoprapAblH XapaKTEPUCTHKANBIK (PyHKIMUIApsl KeOCHTKIIITEPTe JKIKTENETiHI monenaeHai. Teopema-
HBIH MOHI MBICAJT APKBLIBI AfKBIHIAIA TYCTI.
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Tyiiin ce3mep: CBI3BIKTHIK CBIHAPIBI OMEPATOP, HAKTHI CHEKTP, TYIKI BEKTOPIAP, TOJBIMIBLIBIK, JICKTP CHT-
HAJTAPBIHBIH, TCOPHSCHI, TIIA3MAHBIH TCOPHSCHI, TUCKPETTI OTMEPATOP, IMIKIKEHICTIKTEp, HHBAPHAHTTHI KECHICTIKTED,
TYIIKI KEHICTIKTEP, MCHIIIKTI JKOHE CHIIJIEC BEKTOPIAP, 1K CHMMETPHS, MPOCKTOP, PE36IBCHTA.

AJILIMIanaan6aes’, A A Mlantan6aesa’, B.A. Mlamian6aii’

"Mesxayrapousiii yausepcuter Silkway, . IlIsivkent, KaszaxcTan;
PerHOHAIBHBI COLUAIPHO-HHHOBALHOHHBIA yHuBepcuTeT, I. [llsimkeHT, Kazaxcrax;
*F0skm0-Kasaxcranckmii TocymapcTBeHHBIH yHIBepcHTeT HM. M. AyesoBa, r. IlIsnvkent, Kasaxcran

O NPOEKIIHOHHO OPTOTOHAJIBHOM BA3HUCE JIMHEHHOT' O
HECAMOCOIPAXEHHOI'O OITEPATOPA

Annotanusa. B HacTosmeH pab0Te MCCICIOBAHBI CIICKTPAIBHBIC CBOWCTBA JIMHCHHOTO HECAMOCONPSLKCHHOTO
orepaTopa 00IaJAFOINETO BHYTPCHHEH CHMMETPHEH BHAA

L=L"P, LQ = QL%

rae P* =P, Q" = Q —OpToroHaIbHbIC MPOCKTOPHI, L* — omeparop, COMPSKEHHBIN K 0NepaTtopy L B THIs0EpTOBOM
npoctpancTee H. [lokazaH, UTO CHEKTP TAKOTO ONEpaTopa BEILECTBEHHBIM. B Ciyuyac JUCKPETHOrO omeparopa, ¢
TOTTHOW CHCTEMOH COOCTBCHHBIX M TPHCOCAWHCHHBIX BEKTOPOB, IPOCKIHMH COOCTBEHHBIX M IPHCOCAMHEHHBIX
BEKTOPOB omeparopa L u ero COmpsHKCHHOTO 00Pa3yIOT OPTOHOPMHPOBAHHBIH Oasuc. HaiineH Kimacc omepaTopoB
MIrypma — JlmyBwmra, 00JAJAFOIMMIT TAKOW CHMMCTPHCH, HPH 3TOM OOHAPYIKCHO, HTO XAPAKTCPHUCTHUCCKAS
(yHKIIA TaKOTO omepaTopa gakropusyercs. [IpuBecH HWIIFOCTPATHBHBIN IPUMED.

KmoueBnie ciioBa: JIMHSHHBIH HECAMOCONPSUKEHHBIH ONEPATOP, BEIIECCTBEHHBIA CIHEKTP, 0a3McC, KOPHEBbIC
BCKTOPBL, IIOJIHOTA, TEOPHS 3ICKTPHUCCKUX CHTHAIOB, TEOPHS IUIA3MBL, JUCKPETHBIH ONEPATOpP, MHBAPHAHTHBIC
MOJTPOCTPAHCTBA, KOPHEBBIC MOJNMPOCTPAHCTBA, BIIOJHEC HCMPEPHIBHBIA  OIEpAaTop, COOCTBEHHBIC W
TIPUCOCTUHCHHBIC BEKTOPHL, BHY TPCHHSSI CHMMETPHSL, IIPOCKTOP, PE30IbBEHTA.
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