ISSN 1991-346X 2.2019

NEWS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
PHYSICO-MATHEMATICAL SERIES

ISSN 1991-346X https://doi.org/10.32014/2019.2518-1726.17
Volume 2, Number 324 (2019), 99 — 107

UDC 373.1.02:519.71:002
MPHTH 20.01.07

L.A. Smagulova, A.U.Yelepbergenova, G.A.Mursakimova, A.Nurbekova

Zhetysu state university named after . Zhansugurov, Taldykorgan, Kazakhstan
jgu_laura@mail.ru, aigul_eu@mail ru, gmursakimova@mail.ru, ainven_87(@mail.ru

SORTING ALGORITHMS AND COMPARISON OF THEIR
EFFECTIVENESS

Abstract. The present work is dedicated to the methods of sorting data and analysis of their complexity. There
are several reasons for analysis of algorithms. One of them is necessity to evaluate the boundary values for the
amount of memory or time required by some algorithm for successful data processing. The sorting process can
implemented by various algorithms. The choice of algorithm depends on the structure of the data being processed. In
practice two classes of sorting are used: external and internal. If the amount of input data fits within the range of
available internal RAM they say about the algorithms for internal sorting. But if the input data are stored in files, i.c.
external memory, they say about external sorting.

This work demonstrates the fundamental algorithms of internal soritng with quadratic time and quick
algorithms with O(n*logn) complexity. Quick sorting algorithms such as merge sorting and Hoare™s quicksort
algorithms are given. Also simpler methods of internal sorting such as exchange sort, Shell“s method, insertion and
selection algorithms are discussed as well. The article describes the idea behind these methods, agorithms on which
they are based, complexity of these algorithms and provides concrete examples of programs.

Keywords: array, data, sorting, ordering, exchange sorting, insertion, selection, merge, quicksort, algorithm
complexity.

Introduction.Regardless of whether you are a student or a professional programmer and in which
sphere of activity you work it is neccessary for you to obtain a knowledge of algorithms and data
structures. They are crucial building blocks for solving problems.

The concept of an algorithm is not something completely new to us as we meet them on every step in
our everyday live. This can be an algorithm for computing a mathematical function, an algorithm of a
technological process, an algorithm of designing a computer or some engineering construction, etc.

In all areas of its activities, in particular, in the field ofinformation processing, a person is faced with
various methods of solving problems. They determine theorder of actions to obtain the desired result - we
can interpret this as the initial or intuitive definition of thealgorithm.

An algorithm is a finite prescription given in a language, defining a finite sequence of executable
elementary operations for solving a problem, common to a class of possible input data [1].

The main algorithms of processing data structures are sorting and search algorithms.

Sorting is one of the most important procedures for processing structured data. Sorting is the process
of rearrangement of a given sequence of objects in some predefined order [2]. A certain order, ¢.g.
increasing or decreasing in alphabetic order, in the sequence of objects is necessary for convenience of
using this sequence.

It is much easier to work with ordered objects than with those arranged randomly. It becomes much
simpler to search for an existing element or delete or insert a new one.

The goal of sorting is to facilitate the search for the next element in a pre-sorted sequence.

The process of sorting data can be implemented by various algorithms. The choice of algorithm
depends on the structure of input data. There are two classes of sorting — sorting of arrays and sorting of

News of the National Academy of sciences of the Republic of Kazakhstan

files|3,PP 43]. These classes are also called internal and external respectively. If the amount of input data
allows to use internal RAM then we say about algorithms of internal sorting. If the data are stored in
extrenal memory, that is files, we say about external sorting. This work puts emphasis on fundamental
algorithms of internal sorting. A great diversity of sorting algorithms leads to the necessity of their
analysis to achieve their maximum efficiency.

Methods. To solve this problem, we used method of comparative analysis, methods of theoretical and
research and also methods of the analysis of data.

Results.Before continuing it is necessary to introduce some terms and definitions.

Let us consider the sequence of n elements: «,a,, ..., a, Each record ghas a key &; which manages
the sorting process. The goal of sorting is to rearrange these elements in such a way that all keys are in a
non-decreasing order:

k]SkZS S kn

A sorting algorithm is called stable if during the sorting process the relative order of the elements
with equals keys do not change[3, PP 45].

The most important characteristic of a sorting algorithm is speed of its work which is determined by
functional relation between average time of sorting the sequences of data elements with predefined length
and the length itself. The sorting time is proportional to the number of comparison and reshuffling of data
clements in the process of their sorting.

To evaluate the quality of algorithm it is necessary to define the term complexity (or effectiveness) of
algorithm. The more time and the memory amount it takes to implement the algorithm the greater is its
complexity and effectivenss[4]. The algorithm complexity are divided into capacity and time
complexities. The time capacity is determined by the time taken by the implementation of algorithm.
Capacity complexity is criterium indicating the memory overload for implementation of algorithm.

Solid algorithms of internal sorting require the number of comparisons to be equal to n*logn
order. The following quick algorithms can serve as examples of such solid algorithms:

e merge sorting;

e partition sorting.

We will start the analysis with direct methods which are called simple ordering methods with time
complexity of #” order.This group of algorithms is presented by the following simple algorithm of pair
sorting:

e sclectionsorting;

e cxchangesorting;

e insertion sorting.

Though these algorithms are relatively slow, nevertheless they are convenient for use in describing
the characteristic features of main principles of the majority of sorting methods.

Let us start discussing the quadratic time sorting with the exchange sort algorithms. Here the sorting
is based on comparison of two elements. If the order of elements does not fit the required regularity then
their exchange takes place. The process repeats until all the elements are arranged. Implementation of this
algorithm in C++:

#include <iostream>
using namespace std;
int main ()
{
int *arr;
int size;
cout<<"™ Enter the number of elements in the array n =";
cin>> size;
arr = new int[size];
for (intI = 0; I< size; i++) {
cout<<Marr [W<KIK<M] = %,
cin>>arr[i]

I

— 100 ——

ISSN 1991-346X 2.2019

}
int temp;
for (intI = 0; I< size - 1; i++) {
for (int j = 0; J < size —-I- 1; J++) {
if (arr[j] >arr[j + 1]1) {
temp = arr[j];
arr[j] = arr([j + 11;
arr[j + 1] = temp;

}
}

}
for (intI = 0; I< size; i++) {
cout<<arr[i] <<M"%;

}
cout<<endl;
delete [] arr;
return 04
}

Bubble sort is a specific case of exchange sort. Its idea is reflected by its name. The heaviest
clements go to the top of the sequence, while the lightest are placed at the bottom. The sequence ofn data
clements is compared from the very beginning to the very end so that adjacent elements are swapped if
the first of them is lesser (or lighter) than the second. After the comparison ends the lightest element is
dragged to the bottom of the sequence [5.6].

The next algorithm with quadratic time is the selection sort. The idea of the method is that in the
beginning the smallest element is selected and separated from others. Then it changes places with the very
first elements. After that this operation is repeated with the remainingn-/ elements. The whole process is
repeated until all elements are put in their appropriate places.Its algorithmlooks as follows:

#include <iostream>
using namespace std;
int main ()
{
int *arr;
int size;
inttemp;
intj;
cout<<"“ Enter the number of elements in the array n =";
cin>> size;

arr = new int[size];
for (intI = 0; I< size; i++) {
cout<<Marr [WKIKM] = %,

cin>>»arr([i];

}
for (inti=0; i<size-1;i++)
{
int min=arr[i];
intprs=I;
for (j=i+1; Jj<size; j++)
if (arr[jl<min)

{

min= arr[j];
prs=j;
temp=arr[i];
arr[i]=arr[prs];

— 101 =——

News of the National Academy of sciences of the Republic of Kazakhstan

arr[prs]=temp;

}

}

for (intI = 0; I< size; i++) {
cout<<arr[i] <<M™%;

}

return 0;

}

The insertion sort selects sequentially each element from unordered sequence of elements, compares
it to a pre-ordered element and then places it in an appropriate place.
The algorithm of this method is as follows:

- at the first stage two initial elements are compared. If the next element is lesser than the first then
we swap their places, i.e. the next element is moved to the place of the previous element and this previous
clement is shifted to the next position to the right;

- at the second stage we select an element from unordered sequence and compare it to the two
previously ordered elements. If is greater than these previous elements then it retains its place. Else if it is
lesser then it is shifted to the appropriate place;

- all remaining elements are analysed the similar way until the whole sequence is ordered.
The code of this method is as follows:

#include <iostream>
using namespace std;
int main ()
{
int *arr;
int size;
int temp;
intI;
int j;
cout<<“Enter the number of elements in the array n =";
cin>> size;

arr = new int[size];
for (I = 0; I< size; 1++) {
cout<<Marr ["WKIK<M] = %;
cin>>arr([i];

}
for (i=1; i<size;i++)

{

for (j=i-1; j>=0;j--)
if (arr[jl>arr[j+1]1) {
temp=arr[j];
arr[jl=arr[j+1];
arr[j+l]=temp;
}
}
for (I = 0; I< size; 1++) {
cout<<arr[i] <<M™%;

}
return 0O;

¥

— 102 ——

ISSN 1991-346X 2.2019

3 2 5 6 23 | 4 17 |7 1 9
2 S 5 6 23 | 4 17 |7 1 9
2 5 5 6 23 | 4 17 |7 1 9
2 5 g 6 23 | 4 17 |7 1 9
Z 3 5 6 23

2 S 4 5 6 23 |17 |7 1 9
2 5 4 5 6 L7 | 2

2 5 4 5 6 7 17 | 23

1 Z S 4 5 6 7 17 [23

1 2 = 4 5 6 7 9 1 E2s

The method of direct insertion was improved by D.Shell. The Shell“s method does not compare
neighbouring elements. Instead it compares elements located at the distance, where d — is number of
steps between compared elements. If the sequence consists of # elements the initial value of d=/n/2/. After
cach comparison the d is decreased double times. At the last comparison it is increased to d=/. In the end
such method outputs an ordered sequence. Its implementation looks as follows:

#include <iostream>
using namespace std;
int main ()
{
int *arr;
intsize, d;
int temp;
intI;
int j;
cout<<“Enter the number of elements in the array n =";
cin>> size;

arr = new int[size];
for (I = 0; I< size; 1++) {
cout<<Marr [W<KIKM] = %;

cin>>arr([i];
}
{
d=size;
d=d/2;
while (d>0)
{
for (i=0; i<size-d; i++)
{
Jj=I;
while (3>=0 &&arr[jl>arr[j+d])
{
temp=arr[j];
arr[jl=arr[j+d];
arr[j+d]=temp;
J—=s
}
}
d=d/2;
}

— 103 =——

News of the National Academy of sciences of the Republic of Kazakhstan

for (i=0; i<size ; 1i++)
cout<<arr[i]<<"™;

}

}

The average time of the algorithm®s complexity depends on length of intervals — d which contain
the sorted elements of source array of capacity N on each step of algorithm.

Now let us cover the quicksort algorithms. One version of the quicksort algorithms is merge sort. It
works the following way:

- the sequence is divided to two equal parts;

- each part is sorted separately;

- separately sorted parts of the source sequence are merged.

Now let us provide the program implementation of this algorithm:

#include <iostream>

using namespace std;
intarr[100];

int size;

void merge (int 1, int r) {

if (r == 1) return;
if (r -— 1 == 1)
if (arr[r] <arr)

{
[1]

swap(arr([r], arr[l]);return;
}

int m = (r + 1) / 2;

merge(l, m);

merge(m + 1, r);

intbuf[100];

int x1 = 1

intxr = m + 1;

int cur = 0;

while (r — 1 + 1 != cur) {
if (x1 > m)

buf[cur++] = arr[xr++];
else if (xr> r)

buf[cur++] = arr[x1++];
else if (arr[xl] >arr([xr])
buf[cur++] = arr[xr++];
elsebuf[cur++] = arr[x1l++];

}
for (intI = 0; I< cur; i++)
arr[I + 1] = buf[i]l;
}
int main () {
cout<<“Enter the number of elements in the array n =";cin>> size;
for (intI = 0; I< size; i++)
cin>>arr[i];
merge (0, size - 1);
for (intI = 0; I< size; i++)
cout<<arr[i] <<M™%;
return 0O;

}

— =

ISSN 1991-346X 2.2019

The next algorithm was invented by T.Hoare. In practice it is generally considered to be on of the
most effective quicksort algorithms. This algorithm is known as quicksort algorithm and its complexity
equals O(n*logn). The quicksort algorithm belongs to the group of divide-and-conquer algorithms.

The essense of this algorithm is as follows. A key element is selected and fixed. With respect to this
clement all other elements with larger weight are shifted right and the element with lesser weight are
shifted left. Also with respect to the selected key the whole sequence is divided into two parts and for
cach part the process is repeated. Let us provide the code of the quicksort algorithm where the role of the
key element is played by the central element of the sorted sequence:

#include <iostream>

using namespace std;

int first, last;

// sort function

void sort(int* arr, int first, int last)
{

intI = first, j = last;

doubletmp, x = arr[(first + last) / 21];

do {
while (arr[i] < x)
Ity
while (arr[]j] > x)
J==7

if (I< 5)

{
tmp=arr[i];
arr[i]l=arr[]j];
arr[j]l=tmp;

}
i++;

J—=s
}
} while (I<= 7J);

if (I< last)

sort (arr, I, last);

if (first < 3j)

sort (arr, first,]j):;

}

//main function

int main()

{

intsize;

cout<<“Enter the number of elements in the array n ="; cin>> size;
int *arr=new int[size];
for (inti=0; i<size; i++)
{

cout<<Marr ["WKIK<M] = %;
cin>>arr([i];

}

— 105 =—

News of the National Academy of sciences of the Republic of Kazakhstan

first=0; last=size-1;
sort (arr, first, last);
for (inti=0; i<size; i++)
cout<<arr[1i]<<"™;

}

The merge sort algorithm based on division of the source sequence into separate parts was pretty
simple, while the process of merging the sorted parts was much more complicated. On the contrary, in the
partition sort algorithm the most complicated part was dividng array into parts, while the process of
mergin these parts was much simpler.

Conclusions.Finishing our review and anlysis of sorting methods we attempted to compare their
effectiveness.In our opinion the essence of each method is to provide effective means for rearranging
given sequence in increasing or decreasing order.It is safe to say that algorithms with quadratic time are
casier to understand and use while the quicksort algorithms are harder to undersand but at the same time
more efficient. We think that it is due to user itself to select the appropriate method for his specific case.

JLA. CmaryioBa, A.O. Exendeprenona, I'A. Mypcaknmosa, A. HypoekoBa
1. XKancyripos arsiHaars! JKeticy MeMiekeTTik yHuBEpcuTeTi, Tanasikopran, Kazakcran
CYPBINTAY AJITOPUTM/AEPI ’KOHE OJAPABIH TUIMALILIIKTEPIH CAJIBICTBIPY

AnHoTtamusi. Byn Makama Jepekrepai CyphInTay IiCTepiHE MKOHE ONApAbIH OHIMAIIITIH TAalAayFa apHAJFaH.
Axropur™zaepal TamgayaelH OipkaTap MaHbBI3ABI cebemrepi Oap. OmapasiH Oipi — JepekTepal eHAey YIUIH
AITOPUTMIC KAXKET OOJAThIH Oaramay, »Xaibl KeJeMi YIIiH IIeKapanap HEMECE sKYMBIC VAKBITHIH Ay KaXKCTTLIITI
Ooxpmm Tabbutambl. JlepekTepal CyphINTAay MPOLECi TYPIl aIrOPHTMICP APKBIIBI JKY3EIe AChIPBUIYBI MYMKIH.
AJroput™Mai TaHZAY OHACICTIH OCPEKTEP KYPBUIBIMBIHA TOyedami Oomamsl. Ic Ky3iHAC CKi CYphINTAy KIIACHI
KOJITAHBLIAIBL. iMIKi KOHE CHIPTKBL. Erep Kipic IePeKTEPiHiH KemeMi JKEACT, 1MKi >KaAbIMCH MICKTCICTIH 001Ca, OHIA
IIIKi CYphINTAay aarOPUTMACP] Typambl, aj erep aepekrep (aitrmapaa OpHAIACTBIPBLICA, SFHH, CHIPTKBI XKablaa,
OHZA CBHIPTKBI CYPBINTAY TYPaIbl AHTHUIAIBL.

By sxympicTa 013 IMIKI CYPBINITAY ABIH HETI3TL: KYPZCNILTNIrl KBAAPATTHIK YaKbITKA TeH kaHe O (n * log n)
KYPACTITIKE TEH JKbUIAAM CYPBINTAY AJNTOPHTMI ACT aTalaTblH anroOpuTMACpAi Kapactsipams3. CypslmrayabiH
SKBITAAM alIrOPHTMICPI: OIPIKTIPY apKbLIBI CYpHINTAy, X0apa >KbIIJAM CYPBINTAYBI)KOHE HETYPIBIM KapamanbiM
IMIKI CYPBINITAay SICTEPi: aIMacThIPy KOMETIMEH, TIKeJeH KIpiCTipy apkputel cypsmray, llemm omici, Tanmay
ANTOPUTMICPIHIH KYMBICTAPHI Kemripizeni. Makamama Oyl OTICTCPAiH HETISTI HACACHI MCH MOHICI, KYMBIC
ANTOPUTMI, ATTOPUTMACPIIH KYPACILIITI eCKepiae i, OaraapiaaMaiap MbICAITAPEI KSITIPiae .

Tyiiin ce3mep: MaccuB, ACPEKTEp, CYPHINTAY, PETTLNIK, aIMACTBIPY, KOO, OIPIKTIPY AapKbUIBI CYPBINTAy,
JKBITAAM CYPBINTAY, ANTOPUTMHIH KYPACILIIITI.

JL.A. Cmarynosa, A.Y. Enendeprenosa, I.A. Mypcaknmoa, A.Hyp6exosa
JKersicyckmii rocygapcTeeHHblii yHusepcutetr uM. M. XKancyryposa, Tamasikopran, Kaszaxcran
AJITOPUTMBI COPTUPOBKH U CPABHEHHUE UX 3®PPEKTUBHOCTH

Annortamusi. JIaHHAs CTaThsl MOCBSIICHA METOAAM COPTHPOBKH JAHHBIX W HX AHAIN3A TPYIOCMKOCTH.
CymiecTByeT psiA BAKHBIX IPHYMH TSI aHAMA3A adropuTMoB. OTHON M3 HUX SIBIBICTCS HEOOXOAMMOCTD MOJYHUCHHS
OILICHOK WJIM TPAHHUI[11 00bEMa MAMATH HIM BPEMHH PAabOTHL, KOTOPOE MOTPEOYETCS aNrOpUTMYy Ul YCICITHOH
00paboTkH JaHHBIX. [IpoIIecC COPTHPOBKH JAHHBIX MOXKET OBITH OCYIIECTBICH PA3IUMHBIME AITOPHTMAMH. BEIOOD
AITOPHUTMA 3aBHCHUT OT CTPYKTYPBI 00padaThIBaCMbIX JAHHBIX. Ha MpakTHKE MPUMEHACTCS ABA KJIACCAa COPTHPOBKHU:
BHYTPCHHCH m BHCIMHCH. ECH 00BEM BXOOHBIX JAHHBIX IO3BOJIACT OOXOOUTHCA ONCPATHBHOM, BHYTPCHHCH
MAMATBHIO, TO TOBOPAT 00 aNrOpUTMAX BHYTPEHHEH COPTHPOBKH, a CCIIM JAHHBIC PA3MEMIAIOTCA B (Dalibl, T.c.
BHCINHEH MaMATH, TO PEUb UACT O BHEIIHEH COPTHPOBKE.

B marHOM padoTe MbI MPOJCMOHCTPUPYEM OCHOBHBIC AITOPHTMBI BHYTPSHHCH COPTHPOBKH. C KBAJAPATHIHBIM
BPEMEHEM M aINTOPUTMBI COPTHPOBKH KOTOPBIC HA3BIBAIOTCS OBICTPBIMH W HMCEIOT TPyAOoeMKocTh O(n*logn).

106 ——

ISSN 1991-346X 2.2019

[TpuBoAATCA OBICTPBIC ANTOPHTMBI COPTHPOBKH, TAKHC KAK COPTHPOBKA CIMSAHHCM, OBICTpas COPTHPOBKA Xoapa.
Bonee mpocTeie METOABI BHYTPCHHCH COPTHUPOBKH, TAKHEC KAK COPTUPOBKA C MOMOMLIBID OOMEHA, ¢ MOMOIIBIO
npsMoro BkmroucHUs, Meron Llemma, anroputMmsl BeOOpa. B cTaThe paccMaTpHBacTCS HACA H CYTh 3THX MCTOOB,
anropuT™ paboTHL, TPYAOSMKOCTb 3THX AITOPUTMOB, MPHBOAATCA MPHMEPBI MPOTPAMM.

KirodeBnie cioBa: MacCUB, JAHHBIC, COPTUPOBKA, YIOPSAIOYHBAHUC, COPTHPOBKA OOMCHA, BCTABKA, BHIOOP,
CIUSIHUE, OBICTPAs COPTHPOBKA, TPYIOCMKOCTD ATOPHTMA.

Information about authors:

Smagulova L.A. - Zhetysu state university named after I. Zhansugurov, Taldykorgan, Kazakhstan; jgu laura@mail.ru;
https://orcid.org/0000-0002-1359-2119

Yelepbergenova A.U. - Zhetysu state university named after I. Zhansugurov, Taldykorgan, Kazakhstan; aigul_eu@mail.ru;
https://orcid.org/0000-0002-3525-1825

Mursakimova G.A. - Zhetysu state university named after [. Zhansugurov, Taldykorgan, Kazakhstan,
gmursakimova@mail.ru; https://orcid.org/0000-0001-8608-3561

Nurbekova A. - Zhetysu state university named after [. Zhansugurov, Taldykorgan, Kazakhstan, ainven 87@mail.ru;
https://orcid.org/0000-0002-4588-1222

REFERENCES

[1] Kenzhebaeva Zh.E., Baynazarova R.M. Mathematical and algorithmic models of information processing and
management systems. Reports of the national academy of sciences of the republic of kazakhstan.Volume 1, Number 323
(2019).PP. 117 — 121. ISSN 2224-5227 https://doi.org/10.32014/2019.2518-1483.18

[2] Bupr H. Anroput™sl v cTpyKTyphl JaHHBIX.: 1 lep ¢ aHr-2-e w3z, ucnp. ClI0.: Heckuii Jluanekt, 2008, 352c.

[3] KotoB B.M. AnropuT™bl U CcTPYKTYphl JaHHBIX: yuel. mocobue /B.M.Kotos, E.Il.CoGomeBckas, A.A. TomcTukos.-
Munck: BI'Y, 2011.-267c.

[4] Tarapwma JLI. AJTopUTMBI M CTPYKTYPBI JaHHEIX | YuebHoe mocobue / JLI. Taraprma, B.J[. Kongaes. M.: GuHaHch 1

cratuctrka, 2009.- 304 c.

[5] Kayt, JI.D. Hckycerso nporpammupoBanus. Tom 3. Copruposka u nouck / JloHampa OpeuH Kuyt; o obmr.pen.
10.Ko3zauenxo. 2-e 3. / Ilep. ¢ anrin. M.: Bumbsive, 2007. 824c¢

[6] Maxxonuemt, J[)x. AHanu3 amropuTMoB. AKTUBHBIN oOydaronwid ogxox : lep. ¢ anrm. /J[x. MakkoHHemt. 3-e o1
m371.- M.: Texuocdepa, 2009. 416 c.

— 107 =——

