SPECTROPHOTOMETRICAL STANDARDS 8m-10m.
1. EQUIPMENT, METHODS AND FIRST RESULTS

Abstract. Justification of the task of creation a network the spectrophotometric of standards 8m-10m is given. Standards of this brightness are necessary for calibration of spectral observations using large telescopes. Selection of stars – candidates in spectrophotometric standards and primary standards was made. As candidates in the standards selected stars of spectral classes A and B which are located in the equatorial zone with declination ±3°. The used equipment - a new CCD spectrograph is briefly described. Dispersing element of a spectrograph is the concave toroidal grating which simultaneously serves as collimator and as camera. The spectrograph operates in the slitless mode. As the receiver of radiation the CCD camera ATIC-490EX was used. The new spectrograph allows to investigate an energy distribution in the spectra of much dimer stars than in case of observations with spectrometers. Observations on the telescopes AZT-8 and Zeiss-600 at Kavenskoe plato carry out. The differential method of observations was used. Processing of CCD-spectrograms and numerical reductions detail is described. The energy distribution in spectral region 340 – 660nm is investigated, spectral resolution of the obtained data be 5 nm, the relative standard deviation - from 3 to 6%. The absolute energy distribution in spectra of two candidates for standards is presented.

Key words: stars, spectrophotometrical standards, CCD spectrograph, methods of observations.

СКОПЕРОФОТОГРАММЕТРИЧЕСКИЕ СТАНДАРТЫ 8m-10m.
1. АППАРАТУРА, МЕТОДИКА И ПЕРВЫЕ РЕЗУЛЬТАТЫ

Аннотация. Приведено обоснование задачи создания сети спектрофотометрических стандартов 8m-10m. Стандарты данного блеска необходимы для калибровки спектральных наблюдений на крупных телескопах. Сделана выборка звезд-кандидатов в спектрофотометрические стандарты и первичных стандартов. В качестве кандидатов в стандарты выбраны звезды спектральных классов A и B, которые расположены в экваториальной области со склонением ±3°. Кратко описана используемая аппаратура - новый ПЗС-спектрограф. Диспергирующим элементом спектрографа является вогнутая торoidalная решетка, которая одновременно служит коллиматором и камерой. Спектрограф работает в бесшельевом режиме. В качестве приемника излучения используется ПЗС-камера ATIC-490EX. Новый спектрограф позволяет исследовать распределение энергии в спектрах намного более тусклых звезд, чем со спектрометрами. Наблюдения выполнены на телескопах AZT-8 и Цейсс-600. Использовался дифференциальный метод наблюдений. Подробно описаны метод обработки ПЗС-спектрограмм и численные редукции. Распределение энергии исследуется в спектральной области 340 - 660nm, спектральное разрешение полученных данных составляет 5nm, относительная с.к.о. - от 3 до 6%. Представлено абсолютное распределение энергии в спектрах двух кандидатов в стандарты.

Ключевые слова: звезды, спектрофотометрические стандарты, ПЗС-спектрограф, методы наблюдений.
Введение. Исследование распределения энергии в спектрах звезд - традиционная тематика Астрофизического института им. Фесенкова, а созданный в институте спектрофотометрический каталог [1] продолжает оставаться самым массовым в мире. Спектральное распределение энергии используется для определения физических параметров звезд и межзвездной среды. Кроме того, звезды с известным распределением энергии используются для стандартизации спектрофотометрических наблюдений самых разных небесных тел и для калибровки аппаратуры. Обычно в качестве спектрофотометрических стандартов служат звезды раних спектральных классов. В их спектрах имеются протяженные участки, свободные от сильных спектральных линий. Спектрофотометрические данные представляют в двух видах: «сплошном» и «скважном». В «сплошном» данные о видимой для земной освещенности приводятся непрерывно через определенный интервал, равный интервалу усреднения, т.е. в гистограммном виде. В «скважном» виде данные приводятся для избранных длин волн. В настоящее время сплошное внесветометрическое распределение энергии в интегральном спектре изучено в спектрах около полутысяч звезд. Практически все они ярче 6 величины [1-6]. В литературе и в базе данных SIMBAD имеется несколько десятков звезд-стандартов 7^m - 8^m [7-10] и всего несколько - более слабых. Стандартов же должно быть как можно больше, так как от их количества зависит производительность наблюдений и точность получаемых данных. Очевидно, что при наблюдениях на крупных телескопах требуется более слабые стандарты. Поэтому добавление к имеющимся в наличии слабым стандартам даже нескольких звезд имеет смысл и задача создания слабых спектрофотометрических стандартов является актуальной. Можно сказать, что их создание – «вечная» задача, так как со временем требуются все более слабые стандарты, более точные, с более высоким спектральным разрешением и охватывающие все более широкий интервал спектра. Мы решили расширить список стандартов в сторону более слабых по сравнению с имеющимися в каталогах звездами и создать еще спектрофотометрических стандартов 8^m-10^m. Настоящая работа является первой из планируемой серии публикаций, посвященных ее созданию.

Аппаратура. Распределение энергии в спектрах звезд в указанных выше работах [1-10] было получено с помощью одноканальных спектрометров, в которых приемником излучения служили фотоумножители. Для исследования распределения энергии в спектрах звезд 8^m-10^m нами специально был изготовлен спектрограф [11], в котором приемником излучения является ПЗС-камера. Подчеркнем, что специальных исследований распределения энергии в спектрах звезд с помощью ПЗС-спектрографов мы не встречали. По-видимому, отсутствие таких исследований связано не столько с потерей их актуальности, сколько с методическими трудностями, возникающими при их осуществлении. Стоит отметить, что точность регистрации потоков излучения ПЗС-камерой по сравнению с фотоумножителями более низкая [12]. Вместе с тем, стандартизация спектральных наблюдений различных небесных объектов, полученных с ПЗС-спектрограмами, в отдельных участках спектра выполняется довольно часто (см., например, [13-14]).

В нашем спектрографе для абсолютных измерений (САИ) диспергирующим элементом служит ториoidalная дифракционная решетка. Постоянная решетки – 150 штрихов/мм, размер заштрихованной части решетки - 20*20мм, фокусное расстояние - около 242 мм. Дисперсия спектрографа составляет 25мм/мкм, размер поля - 20мм. Спектрограф работает, по сути, в бесшелевом режиме, входная щель имеет ширину около 1 мм, что заведомо больше размеров изображений звезд для телескопов с фокусным расстоянием менее 20м. Широкие щель или диафрагма требуются для абсолютных измерений - чтобы не было виньетирования пучка. Так как спектральное разрешение данных составляет всего 5мм, то бесшелевой вариант вполне приемлем. Главное достоинство используемой решетки в том, что она обеспечивает плоский спектр в области от 300 до 800нм. Это ее свойство позволяет использовать в качестве приемника излучения ПЗС-матрицы. В качестве приемника излучения служит ПЗС-камера ATIK-490EX. Основные параметры матрицы данной камеры следующие: число пикселей - 3380*2704, размер пикселей - 3.69*3.69 мкм, длина матрицы - 12.5мм. Охлаждение камеры - на 25К ниже температуры воздуха, спектральная область чувствительности – от 300 до 800мкм, шум считывания - 5е.

Подробное описание спектрографа приведено в работе [11]. Заметим, что светосила САИ равна 1:10 и первоначально он был рассчитан на работу с 1-метровыми телескопами «Цейс-1000», 73
расселенных на высокогорной ТШАО. В связи с установкой на этих телескопах оптических редукторов, наблюдения выполнены на телескопах АЗТ-8 и Цейсс-600, которые находящихся на Каменском плато. На плато прозрачность атмосферы хуже, что снизило точность полученных данных. К недостаткам САИ можно отнести то, что размер матрицы используемой камеры не позволяет одновременно охватить всю доступную измерениям область спектра. При замене ПЗС-камеры на более крупную, этот недостаток САИ устраняется.

Выборка звезд-кандидатов в стандарты и первичных стандартов. В качестве слабых спектротометрических стандартов мы выбрали 24 звезды ранних спектральных классов 8-10 величины, расположенных равномерно вдоль экватора (δ = ±3°). Данный выбор обусловлен двумя факторами. Во-первых, спектры А-В- звезд имеют протяженные участки, которые свободны от сильных линий. Их удобно использовать для стандартизации наблюдений и калибровки аппаратуры. К тому же, результаты стандартизации и калибровки практически не зависят от спектрального разрешения используемого спектрографа. Во-вторых, стандарты в экваториальной зоне можно использовать при наблюдениях в разных полушариях Земли. Естественно, что при выборе должны сюда относиться основное требование к любым стандартам - они должны быть непрерывными. Список звезд-кандидатов в стандарты представлен в таблице 1.

Таблица 1 - Список и характеристики звезд-кандидатов в спектротометрические стандарты 8° - 10°

<table>
<thead>
<tr>
<th>Hip (Tuc)</th>
<th>HD (BD)</th>
<th>α 2000</th>
<th>δ 2000</th>
<th>V</th>
<th>B-V</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1241</td>
<td>1112</td>
<td>00h 15m 27.3s</td>
<td>-03° 39' 15"</td>
<td>9.105m</td>
<td>-0.066m</td>
<td>B9V</td>
</tr>
<tr>
<td>9152</td>
<td>12021</td>
<td>01h 57.56.1</td>
<td>-02 05 58</td>
<td>8.843</td>
<td>-0.071</td>
<td>A0</td>
</tr>
<tr>
<td>13917</td>
<td>18571</td>
<td>02h 59 16.8</td>
<td>01 14 40</td>
<td>8.632</td>
<td>+0.038</td>
<td>A0V</td>
</tr>
<tr>
<td>18243</td>
<td>24520</td>
<td>03h 54 07.0</td>
<td>02 11 02</td>
<td>8.626</td>
<td>+0.118</td>
<td>B9</td>
</tr>
<tr>
<td>20778</td>
<td>28190</td>
<td>04h 27 03.5</td>
<td>04 16 51</td>
<td>9.021</td>
<td>+0.125</td>
<td>B9V</td>
</tr>
<tr>
<td>24053</td>
<td>28997</td>
<td>05h 10 07.8</td>
<td>-00 16 58</td>
<td>9.964</td>
<td>+0.077</td>
<td>B8V</td>
</tr>
<tr>
<td>29258</td>
<td>42334</td>
<td>06h 10 08.7</td>
<td>00 42 36</td>
<td>9.327</td>
<td>+0.025</td>
<td>B8III</td>
</tr>
<tr>
<td>32634</td>
<td>50887</td>
<td>06h 51 40.6</td>
<td>00 19 36</td>
<td>9.084</td>
<td>+0.047</td>
<td>B9III</td>
</tr>
<tr>
<td>38123</td>
<td>63367</td>
<td>07h 48 44.4</td>
<td>01 56 21</td>
<td>8.990</td>
<td>+0.060</td>
<td>B9V</td>
</tr>
<tr>
<td>Tuc210-680</td>
<td>BD+01 2119</td>
<td>08h 32 43.6</td>
<td>00 53 49</td>
<td>10.13</td>
<td>-0.07</td>
<td>A0</td>
</tr>
<tr>
<td>48704</td>
<td>86027</td>
<td>09h 55 59.6</td>
<td>02 47 55</td>
<td>8.356</td>
<td>-0.029</td>
<td>A0V</td>
</tr>
<tr>
<td>58011</td>
<td>97917</td>
<td>11h 15 48.3</td>
<td>-02 17 58</td>
<td>8.880</td>
<td>-0.145</td>
<td>B9</td>
</tr>
<tr>
<td>Tuc281-353</td>
<td>BD+01 2668</td>
<td>12h 13 25.3</td>
<td>01 09 22</td>
<td>10.29</td>
<td>-0.09</td>
<td>B5?</td>
</tr>
<tr>
<td>66872</td>
<td>BD+02 2711</td>
<td>13h 42 19.0</td>
<td>01 30 18</td>
<td>10.263</td>
<td>-0.11</td>
<td>B5</td>
</tr>
<tr>
<td>Tuc317-603</td>
<td>BD+02 2790</td>
<td>14h 14 25.9</td>
<td>01 47 58</td>
<td>10.11</td>
<td>0.03</td>
<td>A0</td>
</tr>
<tr>
<td>74972</td>
<td>136161</td>
<td>15h 19 14.7</td>
<td>-02 10 02</td>
<td>8.891</td>
<td>0.330</td>
<td>A3V</td>
</tr>
<tr>
<td>82133</td>
<td>151355</td>
<td>16h 46 47.0</td>
<td>02 12 34</td>
<td>8.826</td>
<td>-0.092</td>
<td>B4/5V</td>
</tr>
<tr>
<td>87417</td>
<td>162628</td>
<td>17h 51 52.6</td>
<td>02 53 59</td>
<td>8.258</td>
<td>0.192</td>
<td>B9.5V</td>
</tr>
<tr>
<td>92559</td>
<td>174648</td>
<td>18h 51 41.0</td>
<td>-01 45 35</td>
<td>8.827</td>
<td>0.118</td>
<td>B9.5V</td>
</tr>
<tr>
<td>Tuc479-625</td>
<td>185296</td>
<td>19h 38 21.0</td>
<td>01 30 14</td>
<td>9.741</td>
<td>0.210</td>
<td>B9II</td>
</tr>
<tr>
<td>101541</td>
<td>BD-03 4950</td>
<td>20h 34 43.6</td>
<td>-02 41 44</td>
<td>10.010</td>
<td>+0.141</td>
<td>A0</td>
</tr>
<tr>
<td>Tuc 531-232</td>
<td>BD+01 4436</td>
<td>21h 10 11.5</td>
<td>02 14 20</td>
<td>9.99</td>
<td>+0.03</td>
<td>A0</td>
</tr>
<tr>
<td>112149</td>
<td>215112</td>
<td>22h 42 58.0</td>
<td>-02 40 57</td>
<td>8.240</td>
<td>-0.041</td>
<td>B9V</td>
</tr>
<tr>
<td>Tuc 581-756</td>
<td>BD+02 4661</td>
<td>23h 23 38.20</td>
<td>02 55 57</td>
<td>10.05</td>
<td>0.38</td>
<td>F2</td>
</tr>
</tbody>
</table>

Самый яркий кандидат в стандарты - звезда HD 151355 (V=8.25°), самый слабый – BD+02 2711 (V=10.37°). Абсолютное большинство звезд списка удовлетворяет поставленным требованиям. Только одна звезда расположена вне выделенной полосы и только одна звезда имеет спектральный класс F2.

Как и при создании всех каталогов [1-10], наблюдения выполнены дифференциальным методом. Звезды-кандидаты в спектротометрические стандарты привязывались к звездам, для которых было заранее известно спектральное распределение энергии (их можно назвать
Таблица 2 - Список вторичных спектрофотометрических стандартов и их характеристик

<table>
<thead>
<tr>
<th>№/н</th>
<th>HD</th>
<th>α2000</th>
<th>δ2000</th>
<th>π(мас.)</th>
<th>V</th>
<th>B-V</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>009716</td>
<td>01° 35' 10''</td>
<td>-02° 20'</td>
<td>5.29</td>
<td>7.43°</td>
<td>0.16°</td>
<td>A0V</td>
</tr>
<tr>
<td>2</td>
<td>023009</td>
<td>03° 41.6'</td>
<td>-00° 10'</td>
<td>6.20</td>
<td>8.64</td>
<td>0.21</td>
<td>A0V</td>
</tr>
<tr>
<td>3</td>
<td>036117</td>
<td>05° 29.5'</td>
<td>-00° 03'</td>
<td>6.09</td>
<td>7.99</td>
<td>0.10</td>
<td>A0</td>
</tr>
<tr>
<td>4</td>
<td>075620</td>
<td>08° 51.1'</td>
<td>00° 28'</td>
<td>4.01</td>
<td>7.97</td>
<td>0.11</td>
<td>A0V</td>
</tr>
<tr>
<td>5</td>
<td>100237</td>
<td>11° 32.0'</td>
<td>-01° 47'</td>
<td>3.31</td>
<td>7.34</td>
<td>-0.01</td>
<td>A0V</td>
</tr>
<tr>
<td>6</td>
<td>121513</td>
<td>13° 55.8'</td>
<td>01° 31'</td>
<td>3.25</td>
<td>8.00</td>
<td>0.11</td>
<td>A0V</td>
</tr>
<tr>
<td>7</td>
<td>147470</td>
<td>16° 22.9'</td>
<td>00° 30'</td>
<td>7.19</td>
<td>7.67</td>
<td>0.10</td>
<td>A0V</td>
</tr>
<tr>
<td>8</td>
<td>185198</td>
<td>19° 37.9'</td>
<td>01° 30'</td>
<td>1.60</td>
<td>7.32</td>
<td>0.19</td>
<td>B9.5V</td>
</tr>
<tr>
<td>9</td>
<td>216261</td>
<td>22° 51.6'</td>
<td>-01° 49'</td>
<td>4.02</td>
<td>8.16</td>
<td>0.16</td>
<td>A0V</td>
</tr>
</tbody>
</table>

Методы наблюдений и обработки. Наблюдения выполнены методом равных высот, который позволяет использовать в редукции за поглощение в атмосфере среднее значение коэффициента спектральной прозрачности для места наблюдений. Его значения были взяты из работы [11], в которой они приводятся для летнего и зимнего сезонов. Разность воздушных масс ΔM между записями стандарта и кандидата в стандарты в среднем не превышала 0.10. Каждая звезда наблюдалась от 4 до 7 раз. По разным причинам (аппаратурным и атмосферным) часть записей спектров была выброшена. Длительность экспозиций составляла от 100 до 500 секунд. Температура камеры и биннина для программных и стандартных звезд должны быть одинаковыми. Режимы записей их спектров отличаются только экспозицией. Звезды, для которых получено абсолютное распределение энергии путем привязки к вторичным стандартам, можно назвать третичными стандартами.

Кратко опишем процедуру обработки кадров и полученных по ним данных. Подробно она изложена в составленной нами инструкции. Результатом наблюдений с САИ являются «сырые» кадры спектров звезд в формате “FIT”, которые необходимо «довести до числа». Пример одного из полученных кадров приведен на рисунке 1. Кадры обрабатываются в пакете «MaxIm DL–6» стандартным способом. Первый этап обработки отснятых кадров начинается с очистки от «горящих» пикселей, порождаемых дефектами матрицы и космическими лучами. Второй этап - так называемая калибровка. Это стандартная процедура, позволяющая с помощью дополнительных кадров (плоского поля, биасов и дарков) учесть все аппаратуарные искажения. В нашем случае плоское поле не записывалось ввиду однородности используемой матрицы. Третий этап – вычитание фона и преобразование кадров в числовом массив в пакете Excel. В итоге в памяти компьютера мы имеем набор численных значений напольных на матрице зарядов (импульсов), которые пропорциональны потокам от звезд в соответствующих длинах волн. Программа Excel позволяет его представить в виде графика - регистрограммы. Четвертый этап - отождествление на регистрограмме длии волн. Оно осуществляется вручную, «на глаз». Курсором наводимся на центр депрессии в спектре, вызванной той или иной линией. Для звезд равных спектральных классов реперами служат балмеровские линии Hα, Hβ и Hγ, для звезд класса G - линии Н и К. Очень ответственным является следующий этап - разбиение на 50-ангстремные интервалы. Дисперсия спектрографа - практически линейна. В нашем спектрофотографе 50А соответствует 25.5 пикселя. Из-за небольших сдвигов спектра при разных положениях спектрографа начало первого 50-А интервала необходимо вычислять для каждого кадра. Заранее была заготовлена таблица из номеров пикселей, соответствующая начальной и концу 50-ангстремных интервалов (шаблон). Маркер монитора выставлялся на центр линии Нβ. Номер пикселя центра линии фиксировался и таблица (шаблон) соответственно целиком сдвигалась в ультрафиолетовую или красную область спектра. Точность отождествления - 1-2 пикселя (2-5А). Для вторичных стандартов требуется еще одна операция - необходимо выполнить интерполяцию неперывного спектра в участках спектра.
занимающихся бальмеровскими линиями. Интерполяция осуществляется после разбивки регистрограммы на 50-астрономические интервалы. Интерполировались табличные значения, их значения контролировались графически, - «на глаз», что требует определенного навыка. Ввиду краткости интервалов такая интерполяция проводится достаточно уверенно. Естественно, что ручной способ интерполяции требует значительного времени, но в нашем случае это оптимальный вариант. Пример регистрограммы приведен на рисунке 2.

Рисунок 1 - Спектрограмма HD1112 (9.10⁵, B9V)

Рисунок 2 - Регистрограмма HD24520 (8.63⁵, B9)

Численные редукции. Отчеты внутри 50-астрономических интервалов суммируются и нормируются, то есть усредняются и регистрограмма превращается в гистограмму. Все вычисления и численные редукции выполняются в пакете Excel.

Редукции за различие экспозиций звезды и стандарта и за разное поглощение излучения от них в атмосфере Земли выполнены по классической формуле дифференциальной спектрофотометрии:

\[
E_s(\lambda) = E_0(\lambda) \cdot \frac{I_s(\lambda)}{I_0(\lambda)} \cdot \frac{\Delta t_s}{\Delta t_0} \cdot r_{\phi}(\lambda)^{\Delta M},
\]

где \(E_s(\lambda)\) и \(E_0(\lambda)\) - внеатмосферные значения спектральных плотностей энергетических освещенностей, создаваемых звездой и стандартом;

\(I_s(\lambda)\) и \(I_0(\lambda)\) - усредненные в интервале 5^м отсчеты на звезду и стандарт (при привязке к двум записям стандарта - среднее из двух наблюдений); \(\Delta t_s\) и \(\Delta t_0\) - длительность экспозиций в секундах на стандарт и звезду; \(r_{\phi}(\lambda)\) - среднее значение коэффициента прозрачности для места наблюдения; \(\Delta M = M_s - M_0\) - разность воздушных масштаб между стандартом и звездой.

В редукциях для вторичных стандартов мы брали значения освещенностей и отсчетов не для интегрального спектра, а для квазинепрерывного. Для исследуемых звезд берутся интегральные
отчетах внутри интервалов с теми же номерами пикселей (длин волн центров 50А интервалов). Результаты наблюдений для двух спектрофотометрических стандартов промежуточного блеска HD 1112 и HD 12021 приведены в таблице 3. Точность полученных данных, характеризуемая относительной среднеквадратичной ошибкой, составляет от 3 до 6%. Для звезд 9-10 величины такую точность абсолютных измерений можно считать вполне удовлетворительной.

Таблица 3- Распределение энергии в спектрах E(λ) для HD1112 и HD 12021 (единицы - 10⁻²² W/m²/м²)

<table>
<thead>
<tr>
<th>λ, Å</th>
<th>1112</th>
<th>12021</th>
<th>λ, Å</th>
<th>1112</th>
<th>12021</th>
<th>λ, Å</th>
<th>1112</th>
<th>12021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3425</td>
<td>80.5</td>
<td>178</td>
<td>4525</td>
<td>141.6</td>
<td>206</td>
<td>5625</td>
<td>80.1</td>
<td>108</td>
</tr>
<tr>
<td>3475</td>
<td>81.8</td>
<td>176</td>
<td>4575</td>
<td>137.0</td>
<td>200</td>
<td>5675</td>
<td>78.7</td>
<td>103</td>
</tr>
<tr>
<td>3525</td>
<td>84.9</td>
<td>178</td>
<td>4625</td>
<td>135.0</td>
<td>196</td>
<td>5725</td>
<td>75.2</td>
<td>101</td>
</tr>
<tr>
<td>3575</td>
<td>80.5</td>
<td>165</td>
<td>4675</td>
<td>130.6</td>
<td>189</td>
<td>5775</td>
<td>73.5</td>
<td>97</td>
</tr>
<tr>
<td>3625</td>
<td>79.9</td>
<td>169</td>
<td>4725</td>
<td>125.4</td>
<td>181</td>
<td>5825</td>
<td>72.0</td>
<td>96</td>
</tr>
<tr>
<td>3675</td>
<td>81.8</td>
<td>166</td>
<td>4775</td>
<td>121.9</td>
<td>172</td>
<td>5875</td>
<td>72.4</td>
<td>94</td>
</tr>
<tr>
<td>3725</td>
<td>92.8</td>
<td>173</td>
<td>4825</td>
<td>118.0</td>
<td>160</td>
<td>5925</td>
<td>68.8</td>
<td>91</td>
</tr>
<tr>
<td>3775</td>
<td>106.1</td>
<td>192</td>
<td>4875</td>
<td>111.3</td>
<td>154</td>
<td>5975</td>
<td>67.4</td>
<td>89</td>
</tr>
<tr>
<td>3825</td>
<td>131.0</td>
<td>226</td>
<td>4925</td>
<td>108.8</td>
<td>155</td>
<td>6025</td>
<td>66.4</td>
<td>88</td>
</tr>
<tr>
<td>3875</td>
<td>159.6</td>
<td>265</td>
<td>4975</td>
<td>109.3</td>
<td>154</td>
<td>6075</td>
<td>64.7</td>
<td>83</td>
</tr>
<tr>
<td>3925</td>
<td>168.1</td>
<td>272</td>
<td>5025</td>
<td>107.0</td>
<td>149</td>
<td>6125</td>
<td>63.2</td>
<td>82</td>
</tr>
<tr>
<td>3975</td>
<td>186.1</td>
<td>299</td>
<td>5075</td>
<td>105.2</td>
<td>145</td>
<td>6175</td>
<td>60.4</td>
<td>81</td>
</tr>
<tr>
<td>4025</td>
<td>191.3</td>
<td>309</td>
<td>5125</td>
<td>102.2</td>
<td>141</td>
<td>6225</td>
<td>57.5</td>
<td>76</td>
</tr>
<tr>
<td>4075</td>
<td>186.8</td>
<td>282</td>
<td>5175</td>
<td>99.7</td>
<td>137</td>
<td>6275</td>
<td>57.8</td>
<td>74</td>
</tr>
<tr>
<td>4125</td>
<td>178.6</td>
<td>274</td>
<td>5225</td>
<td>96.3</td>
<td>133</td>
<td>6325</td>
<td>56.2</td>
<td>72</td>
</tr>
<tr>
<td>4175</td>
<td>174.2</td>
<td>270</td>
<td>5275</td>
<td>93.6</td>
<td>127</td>
<td>6375</td>
<td>54.8</td>
<td>71</td>
</tr>
<tr>
<td>4225</td>
<td>171.6</td>
<td>263</td>
<td>5325</td>
<td>91.0</td>
<td>124</td>
<td>6425</td>
<td>54.5</td>
<td>68</td>
</tr>
<tr>
<td>4275</td>
<td>169.2</td>
<td>249</td>
<td>5375</td>
<td>88.4</td>
<td>121</td>
<td>6475</td>
<td>54.4</td>
<td>66</td>
</tr>
<tr>
<td>4325</td>
<td>158.8</td>
<td>229</td>
<td>5425</td>
<td>87.7</td>
<td>117</td>
<td>6525</td>
<td>50.5</td>
<td>63</td>
</tr>
<tr>
<td>4375</td>
<td>150.0</td>
<td>224</td>
<td>5475</td>
<td>86.9</td>
<td>115</td>
<td>6575</td>
<td>48.0</td>
<td>60</td>
</tr>
<tr>
<td>4425</td>
<td>146.4</td>
<td>220</td>
<td>5525</td>
<td>83.5</td>
<td>111</td>
<td>6625</td>
<td>47.0</td>
<td>63</td>
</tr>
<tr>
<td>4475</td>
<td>145.0</td>
<td>213</td>
<td>5575</td>
<td>80.5</td>
<td>111</td>
<td>6675</td>
<td>47.5</td>
<td>63</td>
</tr>
</tbody>
</table>

Работа выполнена при поддержке программы целевого финансирования BR05236322 Министерства Образования и науки РК.

ЛИТЕРАТУРА

УДК 524.31

В. М. Терещенко

«В. Г. Фесенков атындағы Астрофизика институты» ЕЖШС, Алматы, Қазақстан

СПЕКТРОФОТОМЕТРИЧЕСКИЙ СТАНДАРТЫ, 8-10. МАПРАТУРА, ЭДИСТЕМЕ ЖӘНЕ АЛАГАШКИ НӘТИЖЕЛЕР

Аннотация. 8-10-й квартал стандартарын жүйесін құру міндеттерінің негізінде көлігірлік. Осы қарқыны жанды телескоптарда спектрлік құбылыс қалыпталды. Кандидаттық танданыды және әлшестірні құрылғы жұмыс істеіді. Спектралдық апараттарын салыстырып, жаңа БЗА-спектрографы не болып табылады. Егер үйкілсіз көлімді және камера болып келсе, онда спектрограф әлінің құрылмасы қосылмасы және қалыптастырылып алады. Спектрограф құрылымы ерекшеленеді. Бұл камера арқылы 490ЕХ пайдаланылады. Жаңа спектрограф энергияның тарадың зерттеу үшін мүмкіндік береді. Еререкетері спектрометрмен құбылыздар спектрлерінде бірінсі әлісіз. Құбылыздар АЗТ-8 және Цейсс-600 телескоптарына орындалып, құбылыстың өзгерісін әлісіз. Спектрограмдамен құрылғының теселледегі энергияның нәтижесі тарады қосылады.

Түйін сөзі: құбылыздар, спектрографиялық стандартар, БЗА-спектрограф, әлісіз.

Информация об авторе:
Терещенко В. М. - кандидат физ.-мат. наук, в.н.с. Астрофизического института им. В.Г.Фесенкова; volter2307@mail.ru