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1. Introduction.

Currently, there are different approaches to the solution of Cauchy problem for elliptic equations,
which is a classic example of an ill-posed problem. All approaches basically can be divided on two large
groups. One group consists of methods based on the introduction of the problem into the class of
correctness by Tikhonov [1] - [3], the other are the methods using the universal regularizing algorithms,
obtained by means of the parametric functional of Tikhonov [4].

It should be noted that the second group of methods received the most spread and major
achievements in the practical application. In this approach, are used different variants of regularized
algorithms that reduce the problem or to the solution of integral equations of the first kind, or to the
representation of the desired field in the region beside or to the construction of finite-difference
regularized algorithms [4] — [6].

In view of a great importance of the problem, which has applications in many fields of science and
technology, and constantly rising requirements for the reliability of the results, the search for other
approaches to its solution is continued. Iterative methods in recent years are becoming more widely used
in the practice of solutions of various ill-posed problems of mathematical physics [7] - [9]. These
methods have a number of undoubted advantages, which include simple computational schemes, their
uniformity for applications with linear and nonlinear operators, the high accuracy of the solution, and so
on.

An important advantage is the fact that they allow simple accounting of the essential restrictions for
tasks on the solution directly in the scheme of the iterative algorithm (e.g., restrictions on non-negativity
of solutions, monotonicity, and so on). In [10] was proposed a new method for solving the problem in
question, based on the alternating iterative procedure, which is a consistent solution of the correct mixed
boundary value problems for the original equation.

It is prooved the convergence of the method and its regularizing properties. This method is general
and can be extended to a wide range of similar ill-posed boundary value problems of mathematical
physics. The weak point of the method is the requirement for the smoothness of the boundary, which is
not always fulfilled, in particular, in our case. In this paper we propose a spectral method [11-14].

Let Q=[-1,1] x [0, =] be a rectangle with sides

AB:y=0,-1<x<L;BC:x=10<y<mCD:y=mn,-1<x<1;DAx=-10<y<m

(see fig.1)
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Fig 1.

Let’s consider the following Cauchy - Dirichlet problem for Poisson's equation in the region Q:

Lu = Uy — Uyy = f(x; y); (1)

ulyzO = 0) uly:ﬂ: = 0) (2)
a

Ule-1 =0, 3| =0, 3)

wheref (x,y) € L2(Q). This problem has been investigated previously in [11], [12] and is found that
inverse operator L™! exists, but is unlimited, in particular, it was shown that the "smallest" eigenvalue of
the operator A = SLhas asymptotics

Amo = 4m2e2™M[1 4+ 0(1)], m - o,

where the operator S has the form Su(x,y) = u(—x,y).
This work complements and refines the results of these studies.

2. Research Methods
The main idea of the method belongs to T.Sh. Kalmenov [11], and consists in the following. The

operator A = SL is symmetric in the space L2(Q), so with the original problem the boundary value
problem is studied

SLu = Sf, (1)
u|y=0 =0, uly:ﬂ: =0, (2)
a >

U|x:_1, % o=—1 = 0) (3 )

where the operator S has the form, see [13] - [15].

Su(x,y) = u(=x,y),

and resembles an involution of M.G. Krein, see [16].
The following spectral problem corresponds to this boundary value problem (1) - (3')
Au = Au,
u|y=0 = 0) u|y=ﬂ.’ = 0)
du

U|x:_1, = 0,
0xl, -
x=—1

where

— 76 ——
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A= SL,
or in expanded form

Uy T Uyy = Au(—x,y), )]
u|y=0 = 0) u|y=ﬂ.’ = 0)

a
U|x:_1, a_u = 0) (5)

Xlx=—1
We solve this spectral problem (4) - (5) using the method of separation of variables, assuming
u(x,y) = v)w(y),

and as a result we get two spectral problems

a) —w'(y) = pw (), (6)
w(0) = 0, w(m) = 0; (7
b) v"(x) — pv(x) = Av(—x), (8)
v(-1) =0,v'(-1) =0. )
The solution of (6) - (7) is well known and has the form w,, (y) = sinmy, m = 1,2 ....,; an analogue

of the spectral problem (8) - (9) was investigated in detail in [14 |, however, we will give a full and
detailed study of this problem in the fourth section of the article. As a result, we have

Ay = AU m=12,.; n=012..
where{u,,}, m=1,2,..; n=0,1,2,..is complete and orthonormal system of functions in the space
12(Q).
Further, from the equation (1') we have
Au = Sf,

Where A is a closure of the operator A in the space L?(Q).
Hence,

W= (A)ISF = ) (A ISF )t = (A = AL = (S, (A Yt

1 1 n—1 umn
Aumn = Amnumw = Aumn = Amnumw A c A' = (A) umn = /1
mn
_ 2 Sf Umn) 2 I ol
Amn m Amn i
mmn mmn

where[f, ] = (Sf, Umy) is the inner product of Krein's space , and (.,.) is the usual inner product of
the space L2(Q), i.e.,

G = fg ) - g )dxdy.
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Therefore, we need to show a closability of operator A, an essential self-adjointness: A = A*, and
reversibility: ker A = {0}, because all of these properties are used in derivation of the last formula

o0

u(x;y) = EMumn(x;y)

Amn
mmn

In addition, it is necessary to examine the spectrum of the operator A.
3. Results of research.

Let D(A) is a domain of definition of operator A, and R(A) is a domain of its values, kerA is a
kernel of the operator A, where

A=SL
Lu = uxx + u_’y_’y; Su(x) y) = u(_x) y);
D(4) = {u(x,y) € C2NCH D uly=0 =0, Uly=g = 0,ulx=—1,

We denote through A the closure of the operator A in the space L2(Q).
The following theorem holds

Ju
ox

_o;
x=-1

Theorem 1.

(a) A is closable, 1.¢. its closure exists;

(b) A is essentially self-adjoint in the space L?(), i.e. the equality holds (4)* = 4;

(c) A is invertible, i.e. kerA = {0}, but the inverse operator (A)~! is unlimited, and has the form

] C (Sf U A
uGey) = D ISFGy) = Y L)y yy= S ety ey

Amn
mn

where{u,,,}, m=12,..;n=0,1,2,.. are the orthonormal ecigenvectors of A, and A,,are the
corresponding eigenvalues;

d) R(A) = H = I*(Q) # R(A);
i.e. the operator equation
Au=Sf
is densely solvable in the space L2 (), but not everywhere solvable. The following theorem 2 reveals
the spectral properties of the operator A.
Theorem 2. The spectrum of operator A consists of four parts
a) The negative part:
I\ 2
—-m? — (nm)? < A, < —m? — (nn +Z) ,mn=12,..;
b) the "zero" part:
mze—zﬁmcosuo(mz) < AO(mZ) < 2(1 + \/E)mze—zﬁm sinuo(mz),
where
ue(m?) = up(1) > uj(1) >0,
and
i
lim ug(m?)==; m=12..
m—wo 4
¢) the positive part
m? + (nm)? < A, <m?+ (nm +§)2, mn=12,..

d) the limit part, i.e. point A = 0 belongs to the limit spectrum of the operator 4, i.e. the equality
holds

{Amn} 3 {03
g) theinequalities hold A,,,, # 0, m=12,...; n=0,12,...
— 78
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Theorem 3. The boundary value problem
Uy + Uy, = Au(—x,y), x € (—1,1], y(x, m)
Uly—0 =0, Uly—r=0,

| du _
u x=—1 ax i - ’
has a complete and orthogonal system of eigenvectors:
U (X, ¥) = sinmy x v, (x), m=12,.;n=01,2,..

Tl X) = Komm [ch\/ M2 + Ay Shy/ M2 — Ay xshym?2 — Ay, chy/m? + Amnx],
m=12,..,n=01,2, ..
whereK,,,,, are the normalization coefficients, andA,,,,are the roots of the equation

vm2 — A
thym? — Athym?2 + 1 = ——,
Ny
for each fixed value m = 1,2

All the eigenvalues are simple, real and not equal to zero.

4. The proofs and discussion.

4.1. On the solvability.

Lemma 1. If the cigenvectors of a symmetric operator T, corresponding to non-zero eigenvalues,
form an orthonormal basis of the Hilbert space H, then

a) this operator is essentially self-adjoint;

b) the operator T is reversible;

¢)R(T) = H;
d) R(T) = R(T),
if and only if the inequality holds

A, |=e>0n=1.2,..

whered, (n = 1,2, ...) are the eigenvalues of the operator T acting in a Hilbert space H.
4.2. On the spectrum of the operator B.
Consider in the space L?(—1,1) the following spectral problem
v (x) —pv(x) = Av(—x),x € (—1,1] ®)
v(-1)=0, v'(-1)=0 )]
where p is a fixed real quantity, A is a spectral parameter.
Let B = SL, where
Lv =v"(x) — pv(x), Su(x) = u(—x),

then the spectral problem (8) - (9) takes the form
Bv = Av; v(-1)=0,v'(-1) = 0.
Notice that
D(B) = {v(x) € C3(-1,1) n C[-1,1]: v(-1) = 0,v'(—1) = O}.
Obviously C5°(—1,1) € D(B). In addition, the equality holds
(Bu,v) = (u, Bv), vu,v € D(B)

If A = 0,then v(x) = 0 by virtue of the uniqueness of the solution of Cauchy problem, so kerB =
{0}, i.e. the inverse operator B~ exists, which has the following form

v(x) = BT () = [ O g,
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for any continuous function f(x) € C[—1,1]. By means of the extension theorem (see [19]., C.154),
we will continue this operator on the whole space L?(—1,1) as a continuous operator

tpe [ SWEG = DSF(O) 2
B 1f(x) f_l = dt, Vf(x) € [2(-1,1).

It is obvious that the operator B~1 is completely continuous and self-adjoint in the space L2(—1,1).
By the formula,
B 1=(B)"?
we have that the operator B is reversible. Operator (B) ! is completely continuous and self-adjoint in
L2(—1,1).

By Hilbert-Schmidt Theorem (see [17], p. 226), for any f(x) € L?(—1,1) the formula holds

(B)f = 2«3) Ly, vn(u,x)>vn(u,x)—2<f (B) 0 (1 )Y ;)

~ «© _ _ Un(‘LL,'X)
_Z n(,Ll,X)>Un(‘LL,X) |B 1U =B~ 1 Un /111(,“)
- v (5 %)

whereA, (1) are the eigenvalues of the operator B, and v, (i; x) are the corresponding eigenvectors.

If (f,v,(4; X)) =0, for n=1,2,.., then (B)"1f = Ohence f = 0, ie. the system {v,(x; x)},n =
1,2, ... is complete and orthogonal in the space L?(—1,1). We formulate the obtained results as following
lemma.

Lemma 2. If yu = [, i¢. itis a real value, then

a) the operator (B)™! is completely continuous and self-adjoint;

b) the spectrum of B is discrete, i.e., it has no the condensation points;

¢) the normalized eigenvectors of B form the orthonormal basis of the space L2(—1,1).

Let's find the eigenfunctions of the problem (8) - (9). The general solution of equation (8) has the
form

v(u, A;x) = a(u, A)shyu— Ax + b(u, A)ch/u + Ax, (10)

wherea(y, 1), b(u, 1) are arbitrary constants.
Indeed,

v (A x) = a(u, D)y — Achyu — Ax + b(u, D/ + Ashfu + Ax, (1
v (1,4 %) == a(u, D — Dshyp — Ax + b, D) (u + Dchyfp + Ax

= pA(, & x)[—a(u, Dshyfp — Ax + b(u, Dk + Ax|A = po(u, 4; x) + v(y, 4; —x),
= v '(uA;x) — uv(u A x) = vy, A; —x).

Substituting (10) - (11) into the boundary conditions (9), we have

{ —ash\Jg — A+ bchJu+A1=0

*
a\/,u—ﬂch\/,u—ﬂ—b\/,u+/15h\/,u+/1=0()

This system of equations has a nontrivial solution only if its determinant A(y, A) equals 0, where
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—shyu—2A4 chypu+ A4
Ju—Achyyu—214 —Ju+ Ash ,u+/1'

Expanding this determinant, we obtain

Alw, V) =

A, A) = \Ju+ Ashyfpu + Ashyfpu — A — Ju — AchJp — Ach\Jp + A (12)

If A = 0, then
Ay, 0) = Vush?lu — Vch? Vi = —ulch? i — sh?u] = =i,

If in addition y = 0, then from (8) - (9) we have that v(x) = 0. Consequently, the value of A =0 is
not an eigenvalue of the problem (8) - (9).

If A = u, then A(u, u) = 0, therefore, the value of A = p is probably the eigenvalue of the problem
(8) - (9), to which the following eigenfunction corresponds

v, u;x) = b(u, wchy 2ux.

But this function satisfies the boundary condition (9) only when the b(u, #) = 0, so there is no
eigenvalues of the boundary value problem (8) - (9) in the segment [—g, 0], u = 0.

Assuming u > 0 for definiteness, let us study the distribution of zeros of functions (12).

Lemma 3. If u > p,, then the function F(u, u)has a unique simple zero ug, located in the interval0 <
Uy < ug < %, where

0
1—2uethy2u, =0, %| weuy = 0.
Lemma 4. If z = u areal quantity, the
a) for 0 < p < pg segment [—p, u]no eigenvalues;
b) when u > poin interval (0, w)will be exactly one eigenvalue Ag (1), which satisfies the estimate

E e~ 2J2ucosug(l) /10+(,u) < 2[1(1 +\/§) .e2 Zusinuo(u),

where
s
uo() > ug() >0, V> po,  lim uo(u) =72,
oF
% u:ué = 0, 1-— 1[2H0th Z‘UO = 0.
a) 0<pu<ipyg
—00 + | A |
—u0 +u
6) u>pe>0
—oly ! to !
—u0 +u
fig 5.

Consequence.Forall ¢ = 1, the inequality holds

u- e 221 < A3 (W) < 2u(1 +V2)e 2v2usinug(1)
where
ou

3u | umus =0, up(1) > 0.

Lemma 5.
a) If 0 < u < g , then the eigenvalues of the spectral task
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v"(x) —pv(x) = Alv(—x), x € (—1,1] ®)

v(-1)=0, v'(-1)=0 9)

consists of two serics: negative

— [,u + (nn + g)z] <A, <- [,u + (nn + %)2] , n=012, ..,
and positive

T
p+ ) <At <u+nm+ E)z' n=0,12..

b) If u > p,, then the third "zero" series will appear, that lays in the interval (0, ), for which a two-
sided estimate is valid

U e~ 2v2ucosug(u) /10+(,u) < 2[1(1 +\/§)€_2 2u sinug(u)
where

T
uo(u) > ug (1) >0, Vu>m,£$yw0=z

aF
% = 0, 1-— A/ Z#Oth 2.“0 =0

n=ug
b) we will name the quantity g the threshold, it is the root of the equation

c)
1—\2uth\2u=0

for it the assessment holds: 0,5 <u_0<0,72, see. ([18].,p.33)
From the system of equations (*) and formula (10), see. P.10 assuming

a, = K,chyu+ 21, b, = K,shyu—21,,

we will find the eigenfunctions of the boundary value problem (8) - (9)

U (tt, A, %) = Kp[chyfpt + Apshyfu — A, x + shyfp — Achyfu — A,x).

Lemma 6. If y > 1 | then the spectral task

v'(x) —uv(x) = w(—x), x€ (-1,1]

(®)
v(-1) =0, v'(-1)=0

)

has complete and orthogonal system of eigenvectors:

U, A, %) = Ky [chyfp + Apshyfp — Ax + shyfp — Achfp — 1], n=012,..

corresponding to the real eigenvalues A,(u), n=0,1,2,.., which are distributed as follows:
a) negative:

2
-[u+ (nm +§)2] <A () < - [,u + (nn +%) ], n=0,12..
b) zero:

E e~ 2J2ucosug(H) /10+(,u) < 2[1(1 +\/§)e—2 2u sinug(u)
where
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Uo() > ug) >0, Vi > Ho, limypto () = 5 (monotonically)

oF
— =0, 1—,/2upthy2u, =0, 05<p,<0,72
Oulu=u; ()
c) positive:

T
U+ mn)? <A <u+ (nm+ E)Z’ n=12..

g) the interval [—p, 0] remains free of eigenvalues where p > 0;
4.3. The proofs of theorems.
Let's start with Theorem 3. Assuming
Upn (X, ¥) =sinmy - v,,,,,(x), m=12, ...

We divide the variables of the equation
uxx + uyy = Au(_x) Y); x € (_1;1]; ye(o; T[)

result for u,,, (x, y) we obtain the spectral problem
V' — mzvmn(x) = Amn?mn(_x); m=12,..

By virtue of the proven Lemma 6, cigenfunctions of the spectral problem :{v,,(x)}, m =
1,2,..,n=0,12,.. form a complete orthogonal system in the space L?(—1,1). Therefore, after
normalization, they form an orthonormal basis of the space.

Lemma 7. If the system {¢,,,(y)}, m = 1,2, ... is an orthonormal basis of the space L?(0, ), and the
system {Y,,(x)} m=12,..; n=0,12,.. for cach fixed value of m is an orthonormal basis of the
space L2(—1,1), then the system

Unn L Y) = V() -0, (¥), m=12,...;n=0,12,..

is an orthonormal basis of the space L2(Q), where Q = [—1,1] x [0, r]. See the proof [14].
In our case,

2
oY) = \/;sinmy, Wnn (X)) = Ky "V (x), m=12,....;n=0,12, ...,

whereK,,,,, are the normalization coefficients, hence eigenfunctions
Un (X, ) = K,p,, Sinmyv,,,, (%), m=12,...n=0,12, ..
of the boundary value problem

Uy, T8y, = Aul—,), 2 € (L1 y € (0,m)
ulyzO = 0) uly:ﬂ: = 0)
du
U|x:_1, a_ =0,
x=-1
After normalization form an orthonormal basis of the space L?(Q). Theorem 3 is proved.
Theorem 2 is a consequence of Lemma 6, when u = m?, m = 1,2, ... Theorem 1 follows from Lemma 1
and Theorem 3.
5. Conclusions.
The operator A has a spectral hatch
(—ug, 0), where0,5 < py < 0,72;
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1) If f(x,y) € L*(Q), then the solution of (1) - (3) exists if and only if
2
) e} +co 2
2 |(SF, thmn)|
< 4o,
By

whereSf(x,y) = f(—x,y).

2) There is regularizing family of tasks, which has the form
Au+pu=Sf,rme 0<pu< .

Proof of paragraph 3). ~
Let 0 < pu < g, we estimate the resolution of (A + ul)~1. It's obvious that

/Tumn + iy = (A + .u)umn;ﬂllerefore(‘éT + 'ul)_lumn - /'l::lzﬂ.

u,(x,y) = [A+ul]"'Sf
= 2 ([/T ek HI]_lsf; Unn)Umn

Gf vmn)

= SEIA+ ull™Y w) Uy, = .
D LA+ T e = A At

Next, we estimate the distance from the point -u  to the spectrum of the operatorA.
a) For the negative ecigenvalues of the operatorA thefollowing  inequality  holds

i3
-m? — (nm)? < A, < —m? — (nw —E)z,m,n =12 ...

Therefore
—00 +

—0 + ©

T =1= QP —1-mo—pu 0

since, 0 < ¢ < o < 0,72,then 0,72 < —py < —u < 0;

- T[Z T[Z T[Z T[Z
A+ 11> |1 = @+ 1| > |1 = @ + ko] = [1 4+ G2 = bo| = 1= o + %,

b) to "zero" cigenvalues A, > 0, we have
|—t = A > == 0| = |—u| = > 0;
For positive eigenvalues the following inequalities hold
T
m? + (nm)? < At, <m?+ (nn +E)2' mn=1.2,..

—00 +
] [l } } $ I ]

1 Y

—1—pe—u O 1 1+ 7?2 Y -

l—u— ol 2+ A, >u+1+n2>1+7r2

— §4 ——

v
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Based on these inequalities, we estimate the resolventofA, at A = —p,.
From the equation,

(A'i'#])uu = Sf,

we have B
w,(x,) = [+ pl]~Sf
SF )
o A
(SF tmn) Sf, tmn)mn | _ 7 SF )
T L T i ’”"+2 FERETIA I e
” ”2 _ (Sf;umn)z + 3 (Sf;umO)z + (Sf;umn)z
e ‘mn(ﬂ— +u)2 L o + 107 Lt iy + 10)2
1SS, e
[ 0t @) ]Z;
1 0
+5 2 (S o) 2 + < KX@IIsfI12 < K2(@) - I I
where

K(e)=max{ L L }

1—p.0+(§)2' g2’ 142

Assume that for a given f € L?(Q) there exists a solution of equation

Au = Sf.

then
11m||u — u|| = 0.
u—-0

Indeed,

1
”uu(x;y) _u(x y)”z = 2 <m ﬂ, ) |(Sf umn)lz 2%—4')2'(5]( umn)lz

2

2(& +u)2umn)2'(5f ”m")'2+2u T S o

2& T2 S )
[CAMEN G, umn|2
< —

+ SF, umo)|?
leor a) o of'” o)l <
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< ! 2 ine
" w22 (L +72)2
[1_“0+(7) ]
u? | (ST, upg 2p?
m=1 (Xmo) (Amo + 1) [1 — 1, _|_( ] 1 0) Xmo + u)
Ao > A3 > > A
< i
- — <1
Amo + 1
2u?
<- > IIfl1?
T
1=+ (i) ]
N

u?

+ ) 1(Sf umo)l?

()" 4 2 ’

2|(Sfum0)|2
(XmO)

RPN 2
2u2||f w
< - 2 2 ()\44—)
[1 THo Tt (E) ] i
| (S, upmo) |2 p? Sl [ €17 Iy T
< lI£l1% + —_—

(o)’ ( )2 EN“ (o)’

= lIf1]2

Sf, 2 .
% < 4w, therefore for any & > Othere exists a number N(&)such
mo

that for all M > N(¢) the inequality holds

+oo|(5fumo)| i
Mo k) 2

By our assumption),_4

Then, at a fixed N (¢), there exists a number § > Osuch that for all 0 < p < §the following inequality
holds
3 2 2
I _ o
CGDE 2

Consequently, for any € > 0 there exists § > 0 such that
2 . .
||uu — u|| <&e?ie. ||uu — u|| < eforall 0 < p < 6, as required.
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YVIK 517.94
AA. Mlanran6aesa ', M.A. Axbuioaes %, A.IIL Iannantaes >, A.)K. Beiicedaea*

! Z AMMAKTBIK O7ICyMETTIK - HHHOBAIMAIBIK YHHBEPCHTTETI, IIIBIMKEHT K..
3,40HTYCTiK-Ka3aKcTaH MeMIIEKETTIK yHHBEpCHTETI, [IIBIMKEHT K..

JAIIJIAC TEBAEYIHIH KOIIUWJIIK ECEBIHIH CHEKTPIJIAIK TAPAJBIMbI

Annoramus, Jlanmac TeHacyine kolsran Kommmin eceOiHiH memimMi 6ap ¢KCHI aHBIKTAJIBIL, OHBIH KpeiiHHIH
KEHICTITIHACTI CHEKTPanAli TapaiubiMbl anbiHABL. COHAH COH PE36JIBEHTACHI APKBUIBI CCENTIH JKOHIC KEJETiHI
KOPCETLII.

Tyiiin ce3aep: Kommmin ecebi, JlamnacTelH TCHACYI, AYBITKBIFAH APTYMCHT, JKANBUIBIK, OCIpe Y3IKCI3miK,
IMunbepr men HIMuaTie TEOpEeMAachL.
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AA. Mlanxan6aesa ', MM Axbuioaes %, A.IIL IMannantaes °, A.)K. Beiicedaea*

!-*PerHOHA B HBIH CONMATBHO-HHHOBAIMOHHBIH YHHBEPCHTET, T. [LIBIMKEHT;
*'FOKT'Y um M.O.Ay33083, T.IIIsIMKEHT.

CIIEKTPAJIBHOE PA3JIO’KEHHUE PEHIEHUA 3AJTAYH KOIIHA A1 YPABHEHUSA JAILTACA

Annoramus.B mpoctpascTee KpeiiHa, mMOnydYeHO CIIEKTPaNbHOE Pa3iIoyKEHHE pelneHuH 3axaun Komm ypas-
HeHM Jlammaca, u MpOM3BEACHA PEry IPH3alKA 3a0a49H, C MOMOIIBI PE30/IbBCHTBEI COOTBETCTBYIOIIETO ONEPATOPA.

Kiouessle ciioBa: 3agaya Komm, ypasaenue Jlamiaca, HEKOPPEKTHOCTb, CHEKTP, OTKJIOAIOIIUECS apryMEHT,
CaMOCOTIPSKEHHOCTD, KOMIIAKTHOCTH, Teopema I mipdepra-Imuara.
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