NEWS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN PHYSICO-MATHEMATICAL SERIES

ISSN 1991-346X

https://doi.org/10.32014/2019.2518-1726.62

Volume 5, Number 327 (2019), 89 – 97

UDC 517.956 MRNTI 27.31.15

S.A. Aldashev, M.N.Maikotov

¹ Kazakh National Pedagogical University named after Abai, Almaty, Kazakhstan <u>aldash51@mail.ru</u>, mukhit777@mail.ru

DIRICHLET PROBLEM IN A CYLINDRICAL AREA FOR ONE CLASS OF MULTIDIMENSIONAL ELLIPTIC-PARABOLIC EQUATIONS

Abstract. Boundary-value problems for degenerate elliptic-parabolic equations on the plane are studied quite well ([1]). The correctness of the Dirichlet problem for degenerate multidimensional elliptic-parabolic equations with degeneration of type and order was established in [3]. In the work for multidimensional elliptic-parabolic equations with degeneration of type and order, the solvability is shown and an explicit form of the classical solution of the Dirichlet problem is obtained.

Keywords: solvability, mixed problem, multidimensional elliptic-parabolic equations, Bessel function.

Problem statement and result

Let $\Omega_{\alpha\beta}$ — the cylindrical area of the Euclidean space of E_{m+1} points $(x_1,...,x_m,t)$ bounded by a cylinder $\Gamma = \{(x,t): |x|=1\}$, planes $t=\alpha>0$ and $t=\beta<0$, where |x| — is the length of a vector $x=(x_1,...,x_m)$.

Denote by Ω_{α} and Ω_{β} parts $\Omega_{\alpha\beta}$ — of the area and Γ_{α} , Γ_{β} —through parts of the surface Γ , lying in the half-spaces $t \geq 0$ and t < 0, σ_{α} —the upper and σ_{β} —lower base area $\Omega_{\alpha\beta}$.

Let S- further the common part of the borders of the areas Ω_{α} and Ω_{β} representing the $\{t=0,\ 0 \leqslant x \mid <1\}$ set in E_m .

In the area $\Omega_{\alpha\beta}$, we consider degenerate multidimensional hyperbolic-parabolic equations

$$0 = \begin{cases} p_1(t)\Delta_x u - p_2(t)u_{tt} + \sum_{i=1}^m a_i(x,t)u_{x_i} + b(x,t)u_t + c(x,t)u = 0, \ t > 0, \\ g(t)\Delta_x u - u_t + \sum_{i=1}^m d_i(x,t)u_{x_i} + e(x,t)u, \ t < 0, \end{cases}$$

$$(1)$$

where $p_i(t) > 0$ at t > 0, $p_i(0) = 0$, $p_i(t) \in C([0,\alpha])g(t) > 0$ at t < 0, and may vanish when t = 0, $g(t) \in C[\beta, 0]$, a Δ_x – Laplace operator with variables $x_1, ..., x_m, m \ge 2$.

In the future, it is convenient for us to move from the Cartesian coordinates $x_1, ..., x_m$, to spherical $r, \theta_1, ..., \theta_{m-1}, t, r \ge 0, 0 \le \theta_{m-1} < 2\pi, \ 0 \le \theta_i \le \pi, i = 1, 2, ..., m-2, \ \theta = (\theta_1, ..., \theta_{m-1}).$ Problem 1 (Dirichlet). Find a solution to the equation (1) in the area of $\Omega_{\alpha\beta}$ at $t \ne 0$, from the class

Problem 1 (Dirichlet). Find a solution to the equation (1) in the area of $\Omega_{\alpha\beta}$ at $t \neq 0$, from the class $C^1(\overline{\Omega}_{\alpha\beta}) \cap C^2(\Omega_{\alpha} \cup \Omega_{\beta})$, satisfying boundary conditions

$$u|_{\sigma_{\alpha}} = \varphi_1(r,\theta), \quad u|_{\Gamma_{\alpha}} = \psi_1(t,\theta),$$
 (2)

$$u|_{\Gamma_{\beta}} = \psi_2(t,0), \quad u|_{\sigma_{\beta}} = \varphi_2(t,\theta). \tag{3}$$

wherein $\varphi_1(1,\theta) = \psi_1(\alpha,\theta), \psi_1(0,\theta) = \psi_2(0,\theta), \psi_2(\beta,\theta) = \varphi_2(1,\theta).$

Let $\{Y_{n,m}^k(\theta)\}$ - system of linearly independent spherical functions of order n, $1 \le k \le k_n$, $(m-2)!n!k_n = (n+m-3)!(2n+m-2), W_2^l(S), l = 0,1,...$ - Sobolev space. Takes place ([4]).

Lemma 1. Let $f(r,\theta) \in W_2^l(S)$. If $l \ge m-1$, that row

$$f(r,\theta) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} f_n^k(r) Y_{n,m}^k(\theta), \tag{4}$$

as well as series derived from it by order differentiation $p \le l - m + 1$, converge absolutely and evenly.

Lemma 2. In order to $f(r,\theta) \in W_2^1(S)$, it is necessary and sufficient that the coefficients of the series (4) satisfy the inequalities.

$$|f_0^1(r)| \le c_1, \sum_{n=1}^{\infty} \sum_{k=1}^{k_n} n^{2l} |f_n^k(r)|^2 \le c_2, c_1, c_2 = const.$$

Through $\tilde{d}_{in}^k(r,t)$, $d_{in}^k(r,t)$, $\tilde{e}_n^k(r,t)$, $\tilde{d}_n^k(r,t)$, ρ_n^k , $\overline{\phi}_{1n}^k(r)$, $\overline{\phi}_{2n}^k(r)$, $\psi_{1n}^k(t)$, $\psi_{2n}^k(t)$, denote the coefficients of the series (4), respectively functions $d_i(r,\theta,t)\rho(\theta)$, $d_i\frac{X_i}{r}\rho$, $e(r,\theta,t)\rho$, $d(r,\theta,t)\rho$, $\rho(\theta)$, $i=1,\ldots,m$, $\varphi_1(r,\theta)$, $\varphi_2(r,\theta)$, $\psi_1(t,\theta)$, $\psi_2(t,\theta)$, and $\rho(\theta) \in C^\infty(H)$, H-unit sphere in E_m .

Let
$$\frac{a_i(r,\theta,t)}{g_2(t)}, \frac{b(r,\theta,t)}{g_2(t)}, \frac{c(r,\theta,t)}{g_2(t)} \in W_2^l(\Omega_\alpha) \subset C(\overline{\Omega}_\alpha), d_i(r,\theta,t),$$

 $c(r,\theta,t) \in W_2^l(\Omega_\theta), i=1,...,m,l \ge m+1, c(r,\theta,t) \le 0, \forall (r,\theta,t) \in \Omega_\alpha, e(r,\theta,t) \in \Omega_\theta.$

Then fair

Theorem

If
$$\varphi_1(r,\theta), \varphi_2(r,\theta) \in W_2^{\scriptscriptstyle l}(S), \psi_1(t,\theta) \in W_2^{\scriptscriptstyle p}(\Gamma_\alpha), \psi_2(t,\theta) \in W_2^{\scriptscriptstyle l}(\Gamma_\beta), l > \frac{3m}{2},$$
 then problem 1 is solvable.

Proof of the theorem. First, let us rock the solvability of problem (1), (3). In spherical coordinates of equation (1) in the area Ω_{β} has the appearance

$$Lu = g(t)(u_{rr} + \frac{m-1}{r}u_r - \frac{1}{r^2}\delta u) - u_{tt} + \sum_{i=1}^{m} d_i(r,\theta,t)u_{x_i} + e(r,\theta,t)u = 0,$$
 (5)

$$\delta = -\sum_{j=1}^{m-1} \frac{1}{g_j \sin^{m-j-1} \theta_j} \frac{\partial}{\partial \theta_j} (\sin^{m-j-1} \frac{\partial}{\partial \theta_j}), g_1 = 1, g_j = (\sin \theta_1 ... \sin \theta_{j-1})^2, j > 1.$$

It is known [4] that the spectrum of the operator δ consists of own numbers $\lambda_n = n(n+m-2), n=0,1,...$ each of which corresponds k_n orthonormal functions $Y_{n,m}^k(\theta)$.

The desired solution to problem 1 in the field $\Omega_{\scriptscriptstyle{eta}}$ we will look in the form

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \overline{u}_n^k(r,t) Y_{n,m}^k(\theta),$$
 (6)

where $\overline{\mathcal{U}}_n^k(r,t)$ - functions to be defined.

Substituting (6) B (5), then multiplying the resulting expression by $\rho(\theta) \neq 0$, and integrating over a single sphere H, for $\overline{\mathcal{U}}_n^k$ will get [5-7]

$$g(t)\rho_{0}^{1}\overline{u}_{0rr}^{1} + \rho_{0}^{1}\overline{u}_{0tt}^{1} + (\frac{m-1}{r}g(t)\rho_{0}^{1} + \sum_{i=1}^{m}d_{i0}^{1})u_{0r}^{1} + \sum_{n=1}^{\infty}\sum_{k=1}^{k_{n}}\{g(t)\rho_{n}^{k}\overline{u}_{mr}^{k} + \rho_{n}^{k}\overline{u}_{ntt}^{k} + (\frac{m-1}{r}g(t)\rho_{n}^{k} + \sum_{i=1}^{m}d_{in}^{k})\overline{u}_{nr}^{k} + [\tilde{c}_{n}^{k} - \lambda_{n}\frac{\rho_{n}^{k}}{r^{2}}g(t) + \sum_{i=1}^{m}(\tilde{d}_{in-1}^{k} - nd_{in}^{k})]\overline{u}_{n}^{k}\} = 0.$$

$$(7)$$

Now consider the infinite system of differential equations

$$g(t)\rho_0^1 \overline{u}_{0rr}^1 + \rho_0^1 u_{ott}^1 + \frac{m-1}{r} g(t)\rho_0^1 \overline{u}_{0r}^1 = 0,$$
(8)

$$g(t)\rho_{1}^{k}\overline{u}_{1rr}^{k} - \rho_{1}^{k}\overline{u}_{1t}^{k} + \frac{m-1}{r}g(t)\rho_{1}^{k}\overline{u}_{1r}^{k} - \frac{\lambda_{1}}{r^{2}}g(t)\rho_{1}^{k}\overline{u}_{1}^{k} =$$

$$= -\frac{1}{k_{1}}(\sum_{i=1}^{m}d_{i0}^{1}\overline{u}_{0r}^{1} + \tilde{e}_{0}^{1}\overline{u}_{o}^{1}), \ n = 1, \ k = \overline{1, k_{1}},$$

$$(9)$$

$$g(t)\rho_{n}^{k}\overline{u}_{nrr}^{k} - \rho_{n}^{k}\overline{u}_{nt}^{k} + \frac{m-1}{r}g(t)\rho_{n}^{k}\overline{u}_{nr}^{k} - \frac{\lambda_{n}}{r^{2}}g(t)\rho_{n}^{k}\overline{u}_{n}^{k} =$$

$$= -\frac{1}{k_{n}}\sum_{k=1}^{k_{n-1}}\left\{\sum_{i=1}^{m}d_{in-1}^{k}\overline{u}_{n-1r}^{k} + \left[\tilde{e}_{n-1}^{k} + \sum_{i=1}^{m}(\tilde{d}_{in-2}^{k} - (n-1)d_{in-1}^{k})\right]\overline{u}_{n-1}^{k}\right\},$$

$$k = \overline{1, k_{n}}. \quad n = 2, 3, \dots.$$
(10)

Summing up the equation (8) from 1 before k_1 , and the equation (9)- from 1 before k_n , and then adding the resulting expressions together with (7), come to the equation (6).

It follows that if $\{\overline{u}_n^k\}$, $k = \overline{1, k_n}$, $n = 0, 1, \dots$ system solution (7)-(9), then it is a solution to the equation (6).

It is easy to see that each equation of system (7) - (9) can be represented as

$$g(t)(\overline{u}_{nrr}^k + \frac{m-1}{r}\overline{u}_{nr}^k - \frac{\lambda_n}{r^2}\overline{u}_n^k) - u_{nt}^k = \overline{f}_n^k(r,t), \tag{11}$$

where $\overline{f}_n^k(r,t)$ are determined from the previous equations of this system, while $\overline{f}_0^1(r,t) \equiv 0$. Further, from the boundary condition (3), by virtue of (6), we will have

$$\overline{u}_{r}^{k}(r,\beta) = \overline{\varphi}_{2r}^{k}(r), \ \overline{u}_{r}^{k}(1,t) = \psi_{2r}^{k}(t), \ k = \overline{1,k_{r}}, \ n = 0,1,...$$

In (11), (12) replacing $\overline{\mathcal{G}}_n^k(r,t) = \overline{u}_n^k(r,t) - \psi_{2n}^k(t)$, will get

$$g(t)(\overline{\mathcal{G}}_{nrr}^{k} + \frac{m-1}{r}\overline{\mathcal{G}}_{nr}^{k} - \frac{\lambda_{n}}{r^{2}}\overline{\mathcal{G}}_{n}^{k}) - \overline{\mathcal{G}}_{ntt}^{k} = \overline{f}_{n}^{k}(r,t), \tag{13}$$

(12)

$$\overline{\mathcal{G}}_{n}^{k}(r,\beta) = \varphi_{2n}^{k}(r), \ \overline{\mathcal{G}}_{n}^{k}(1,t) = 0, \quad k = \overline{1.k_{n}}, \ n = 0,1,\dots$$
(14)

$$f_n^k(r,t) = \overline{f}_n^k(r,t) + \psi_{2nt}^k + \frac{\lambda_n g(t)}{r^2} \psi_{2n}^k, \phi_{2n}^k(r) = \overline{\phi}_{2n}^k(r) - \psi_{2n}^k(\beta).$$

Replacing the variable $\overline{\mathcal{G}}_n^k(r,t) = r^{\frac{(1-m)}{2}} \mathcal{G}_n^k(r,t)$ задачу (13), (14) we will lead to the following problem

$$L\mathcal{G}_{n}^{k} = g(t)(\mathcal{G}_{nrr}^{k} + \frac{\overline{\lambda}_{n}}{r^{2}}\mathcal{G}_{n}^{k}) - \mathcal{G}_{nt}^{k} = \tilde{f}_{n}^{k}(r,t), \tag{15}$$

$$\mathcal{G}_{n}^{k}(r,\beta) = \overline{\varphi}_{2n}^{k}(r), \quad \mathcal{G}_{n}^{k}(1,t) = 0, \quad \mathcal{G}_{n}^{k}(1,t) = 0,$$
 (16)

$$\overline{\lambda}_n = \frac{[(m-1)(3-m)-4\lambda_n]}{4}, \ \ \widetilde{f}_n^k(r,t) = r^{\frac{(m-1)}{2}}f_n^k(r,t),$$

$$\tilde{\varphi}_{2n}^{k}(r) = r^{\frac{(m-1)}{2}} \varphi_{2n}^{k}(r).$$

The solution of the problem (15), (16) is sought in the form

$$\mathcal{G}_{n}^{k}(r,t) = \mathcal{G}_{1n}^{k}(r,t) + \mathcal{G}_{2n}^{k}(r,t), \tag{17}$$

where $\mathcal{G}_{ln}^k(r,t)$ the solution of the problem

$$L\mathcal{G}_{l,r}^{k} = \tilde{f}_{r}^{k}(r,t), \tag{18}$$

$$\mathcal{G}_{1n}^{k}(r,\beta) = 0, \, \mathcal{G}_{1n}^{k}(1,t) = 0,$$
 (19)

where $\mathcal{G}_{2n}^k(r,t)$ the solution of the problem

$$L\theta_{1n}^{k} = 0, (20)$$

$$\mathcal{G}_{2n}^{k}(r,\beta) = \tilde{\varphi}_{2n}^{k}(r)0, \, \mathcal{G}_{2n}^{k}(1,t) = 0,$$
 (21)

The solution to the above problems, we consider in the form

$$\mathcal{G}_n^k(r,t) = \sum_{s=1}^{\infty} R_s(r) T_s(t), \tag{22}$$

at the same time let

$$\tilde{f}_{n}^{k}(r,t) = \sum_{s=1}^{\infty} a_{ns}^{k}(t) R_{s}(r), \ \tilde{\varphi}_{2n}^{k}(r) = \sum_{s=1}^{\infty} b_{ns}^{k} R_{s}(r).$$
 (23)

Substituting (22) into (18), (19), taking into account (23), we obtain

$$R_{srr} + \frac{\overline{\lambda}_{n}}{r^{2}} R_{s} + \mu_{s,n} R_{s} = 0, \ 0 < r < 1, \tag{24}$$

$$R_s(1) = 0, |R_s(0)| < \infty,$$
 (25)

$$T_{st} - \mu_{s,n} g(t) T_s(t) = -a_{ns}^k(t), \beta < t < 0,$$
(26)

$$T_{c}(\boldsymbol{\beta}) = 0. \tag{27}$$

A limited solution to problem (24), (25) is ([8])

$$R_{s}(r) = \sqrt{r} J_{v}(\mu_{s,n} r), \tag{28}$$

where $v = \frac{n + (m - 2)}{2}$, $\mu_{s,n}$ - zeros of the Bessel function of the first kind $J_v(z)$, $\mu = \mu_{s,n}^2$.

The solution to problem (26), (27) is

$$T_{s,n}(t) = (\exp(-\mu_{s,n}^2 \int_0^t g(\xi) d\xi)) \int_0^\beta g(\xi) (\exp(\mu_{s,n}^2 \int_0^\xi g(\xi_1) d\xi_1) d\xi). \tag{29}$$

Substituting (28) into (23) we get

$$r^{-\frac{1}{2}} \tilde{f}_{n}^{k}(r,t) = \sum_{s=1}^{\infty} a_{ns}^{k}(t) J_{v}(\mu_{s,n}r), r^{-\frac{1}{2}} \tilde{\varphi}_{1n}^{k}(r) = \sum_{s=1}^{\infty} b_{ns}^{k} J_{v}(\mu_{s,n}r), 0 < r < 1.$$
 (30)

Rows (30) - Fourier-Bessel series expansions ([9]), if

$$a_{ns}^{k}(t) = 2[J_{v+1}(\mu_{s,n})]^{-2} \int_{0}^{1} \sqrt{\xi} \tilde{f}_{n}^{k}(\xi,t) J_{v}(\mu_{s,n}\xi) d\xi.$$
(31)

$$b_{ns}^{k} = 2[J_{v+1}(\mu_{s,n})]^{-2} \int_{0}^{1} \sqrt{\xi} \, \tilde{\varphi}_{2n}^{k}(\xi) J_{v}(\mu_{s,n}\xi) d\xi, \tag{32}$$

where $\mu_{s,n}$ s = 1,2,... - positive zeros of the Bessel function $J_{\nu}(z)$, located in ascending order of magnitude.

Of (22), (28), (29) get the solution to the problem (18), (19)

$$\mathcal{G}_{1n}^{k}(r,t) = \sum_{s=1}^{\infty} \sqrt{r} T_{s,n}(t) J_{v}(\mu_{s,n} r), \tag{33}$$

where $\mathcal{Q}_{ns}^{k}(t)$ determined from (31).

Next, substituting (22) B (20), (21), taking into account (23), will have

$$T_{st} - \mu_{s,n}^2 g(t) T_s = 0, \ \beta < t < 0, T_s(\beta) = b_{ns}^k,$$

which solution is

$$T_{s,n}(t) = b_{ns}^k \exp(\mu_{s,n}^2 \int_{-\infty}^{\beta} g(\xi) d\xi.$$
(34)

From (28), (34) we get

$$\mathcal{G}_{2n}^{k}(r,t) = \sum_{s=1}^{\infty} b_{ns}^{k} \sqrt{r} (\exp \mu_{s,n}^{2} \int_{t}^{\beta} g(\xi) d\xi) J_{\nu}(\mu_{s,n} r), \tag{35}$$

where b_{ns}^k are from (32).

Therefore, first solving the problem (8), (12) (n=0), and then (9), (12) (n=1) etc. let's find everything $\mathcal{G}_{n}^{k}(r,t)$ of (17), where $\mathcal{G}_{2n}^{k}(r,t)$ are determined from (33),(35).

So, in the area D_{α} , takes place

$$\int_{H} \rho(\theta) L_1 u dH = 0. \tag{36}$$

Let $f(r,\theta,t)=R(r)\rho(\theta)T(t)$, and $R(r)\in V_0,V_0-$ tight in $L_2((0,1))$, $\rho(\theta)\in C^\infty(H)-$ tight in B $L_2(H),\ T(t)\in V_1,V_1-$ tight in $L_2((\beta,0)).$ Then $f(r,\theta,t)\in V,V=V_0\otimes H\otimes V_1-$ tight in $L_2(\Omega_\beta)$ [10].

From here and from (36), it follows that

$$\int_{\Omega_{\beta}} f(r,\theta,t) L_1 u d\Omega_{\beta} = 0$$

and

$$L_1 u = 0, \ \forall (r, \theta, t) \in \Omega_{\theta}.$$

Thus, by solving the problem (1), (3) in the field Ω_{β} is the function

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \{ \psi_{2n}^k(t) + r^{\frac{(1-m)}{2}} [\mathcal{G}_{1n}^k(r,t) + \mathcal{G}_{2n}^k(r,t)] \} Y_{n,m}^k(\theta),$$
(37)

where $\mathcal{G}_{1n}^{k}(r,t), \mathcal{G}_{2n}^{k}(r,t)$ are from (33), (35).

Given the formula ([9]):

$$2J'_{v}(z) = J_{v-1}(z) - J_{v+1}(z), \text{ ratings [11,4]}$$

$$J_{v}(z) = \sqrt{\frac{2}{\pi z}} \cos(z - \frac{\pi}{2}v - \frac{\pi}{4}) + 0(\frac{1}{z^{\frac{3}{2}}}), v \ge 0,$$

$$|k_{n}| \le c_{1}n^{m-2}, \left|\frac{\partial^{l}}{\partial \theta_{j}^{l}} Y_{n,m}^{k}(\theta)\right| \le c_{2}n^{\frac{m}{2}-1+l}, j = \overline{1, m-1}, l = 0, 1, \dots,$$
(38)

as well as lemmas, restrictions on the coefficients of equation (1) and on given functions $\varphi_1(r,\theta), \varphi_2(r,\theta), \psi_1(t,\theta), \psi_2(t,\theta)$ can be shown that received solution (37) belongs to the class $C^1(\bar{\Omega}_{\scriptscriptstyle B}) \cap C^2(\Omega_{\scriptscriptstyle B})$.

$$u(r,\theta,0) = \tau(r,\theta) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \tau_n^k(r) Y_{n,m}^k(\theta),$$
(39)

$$\tau_n^k(r) = \psi_{2n}^k(0) + \sum_{s=1}^{\infty} r^{\frac{(2-m)}{2}} \left[\int_0^\beta a_{ns}^k(\xi) (\exp \mu_{s,n}^2 \int_0^\xi g(\xi_1) d\xi_1) d\xi + b_{ns}^k \exp(\mu_{s,n}^2 \int_0^\beta g(\xi) d\xi \right] J_{\nu}(\mu_{s,n}r).$$

From (30) - (33), (35), and also from the lemmas, it follows that $\tau(r,\theta) \in W_2^l(S)$, $l > \frac{3m}{2}$.

Thus, taking into account the boundary conditions (2) and (39), we arrive at Ω_{β} to the Dirichlet problem for an elliptic equation.

$$L_2 u = p_1(t) \Delta_x u + p_2(t) u_{tt} + \sum_{i=1}^m a_i(r, \theta, t) u_{x_i} + b(r, \theta, t) u_t + c(r, \theta, t) u = 0, \quad (40)$$

with data

$$u\Big|_{S_0} = \tau(r,\theta), \quad u\Big|_{\Gamma_\alpha} = \psi_1(t,\theta), \quad u\Big|_{\sigma_\alpha} = \varphi_1(r,\theta),$$
 (41)

having a solution ([12]).

Hence the solvability of the problem 1 is established.

The uniqueness of the solution to problem 1. First, we consider problem (1), (3) in the area Ω_{β} and prove its uniqueness of the solution. To do this, we first construct the solution of the first boundary value problem for the equation

$$L_1^* \mathcal{G} \equiv g(t) \Delta_x \mathcal{G} + \mathcal{G}_t - \sum_{i=1}^m d_i \mathcal{G}_{x_i} + d \mathcal{G} = 0, \tag{5^*}$$

with data

$$\mathcal{G}\big|_{s} = \tau(r,\theta) \sum_{n=0}^{\infty} \sum_{k=1}^{k_{n}} \overline{\tau}_{n}^{k}(r) Y_{n,m}^{k}(\theta), \quad \mathcal{G}\big|_{\Gamma_{\beta}} = 0, \tag{42}$$

where $d(x,t) = e - \sum_{i=1}^m d_{ix_i}$, $\overline{\tau}_n^k(r) \in G$, G - many functions $\tau(r)$ from the class $C([0,1]) \cap C^1(0,1)$). Lots of G tight everywhere in $L_2((0,1))$ [10]. The solution to the problem (5 *), (42) will be sought in the form (6), where the functions $\mathcal{G}_n^k(r,t)$ will be defined below. Then, similarly to item 2. functions $\overline{\mathcal{G}}_n^k(r,t)$ satisfy the system of equations (8)-(10), where \overline{d}_{in}^k , d_{in}^k replaced respectively by $-\tilde{d}_{in}^k$, $-d_{in}^k$, a \tilde{e}_n^k on \tilde{d}_n^k , $i=1,\ldots,m, k=\overline{1,k_n}$, $n=0,1,\ldots$

Further, from the boundary condition (42), by virtue of (6), we obtain

$$\overline{\mathcal{G}}_{n}^{k}(r,\theta) = \overline{\tau}_{n}^{k}(r), \ \overline{\mathcal{G}}_{n}^{k}(1,t) = 0, \ k = \overline{1,k_{n}}, \ n = 0,1,\dots$$
(43)

As previously noted, each equation of system (8) - (10) is represented as (11). Problem (11), (43) we will result in the following problem.

$$L\mathcal{G}_{n}^{k} = g(t)(\mathcal{G}_{mr}^{k} + \frac{\overline{\lambda}_{n}}{r^{2}}\mathcal{G}_{n}^{k}) + \mathcal{G}_{nt}^{k} = \tilde{f}_{n}^{k}(r,t), \tag{15'}$$

$$\mathcal{G}_n^k(r,0) = \tau_n^k(r), \quad \mathcal{G}_n^k(1,t) = 0, \tag{44}$$

$$\mathcal{G}_{n}^{k}(r) = r^{\frac{(m-1)}{2}} \overline{\mathcal{G}}_{n}^{k}(r,t), \quad \tilde{f}_{n}^{k}(r,t) = r^{\frac{(m-1)}{2}} \overline{f}_{n}^{k}(r,t), \quad \tau_{n}^{k}(r) = r^{\frac{(m-1)}{2}} \overline{\tau}_{n}^{k}(r).$$

The solution to problem (15), (44) will be sought in the form (17), where $\mathcal{G}_n^k(1,t)$ - solution of the problem for equation (18) with the data $\mathcal{G}_{2n}^k(r,t)$

$$\mathcal{G}_{1n}^{k}(r,0) = 0, \, \mathcal{G}_{1n}^{k}(1,t) = 0,$$
 (45)

a - $\mathcal{G}_{2n}^k(r,t)$ solution of the problem for equation (20) with the condition

$$\mathcal{G}_{2n}^{k}(r,0) = 0, \ \mathcal{G}_{2n}^{k}(1,t) = 0,$$
 (46)

The solution of problems (18), (45) and (20), (46) respectively I have the form $\theta_{1n}^{k}(r,t) = \sum_{s=1}^{\infty} \sqrt{r} (\exp(+\mu_{s,n}^{2} \int_{0}^{t} g(\xi) d\xi)) (\int_{0}^{t} a_{ns}^{k}(\xi) (\exp(\mu_{s,n}^{2} \int_{0}^{\xi} g(\xi_{1}) d\xi_{1}) J_{v}(\mu_{s,n} r),$

where

$$\tau_{s,n} = 2[J_{v+1}(\mu_{s,n})]^{-2} \int_{0}^{1} \sqrt{\xi} \tau_{n}^{k}(\xi) J_{v}(\mu_{s,n}\xi) d\xi, \quad v = \frac{n + (m-2)}{2}.$$

Thus, solving the problem (5 *), (42) in the form of a series

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} r^{\frac{(1-m)}{2}} [\mathcal{G}_{1n}^k(r,t) + \mathcal{G}_{2n}^k(r,t)] Y_{n,m}^k(0),$$

built, which by virtue of estimates (38) belongs to the class $C(\overline{\Omega}_{\rho}) \cap C^2(\Omega_{\rho})$.

As a result of integration by area Ω_B identity [13]

$$\partial L_1 u - u L_1^* \partial = -\partial P(u) + u P(\partial) - u \partial Q$$

where

$$P(u) = g(t) \sum_{i=1}^{m} u_{x_i} \cos(N^{\perp}, x_i), Q = \cos(N^{\perp}, t) - \sum_{i=1}^{m} d_i \cos(N^{\perp}, x_i),$$

but $\,N^{\perp}$ - internal normal to the border $\,\partial\Omega_{eta}$, according to the Green formula we get

$$\int_{S} \tau(r,\theta) u(r,\theta,0) ds = 0. \tag{47}$$

Since the linear span of a system of functions $\{\overline{\tau}_n^k(r)Y_{n,m}^k(\theta)\}$ tight $L_2(S)$ ([10]), hen from (47) we conclude that $u(r,\theta,0)=0, \ \forall (r,\theta)\in S$. So on the principle of extremum for a parabolic equation (5) [14] $u\equiv 0$ B $\overline{\Omega}_g$.

Next, from the Hopf principle ([15]) $\,u\equiv 0\,$ в $\,\overline{\Omega}_{\scriptscriptstyle\beta}\,$.

The theorem is proven completely.

УДК 517.956 МРНТИ 27.31.15

С.А. Алдашев, М.Н. Майкотов

¹ Абай атындағы Қазақ Ұлттық Педагогикалық Университеті, Алматы, Қазақстан ² Абай атындағы Қазақ Ұлттық Педагогикалық Университеті, Алматы, Қазақстан

КӨП-ӨЛШЕМДІ ЭЛЛИПТИКО-ПАРАБОЛАЛЫҚ ТЕҢДЕУЛЕРІНІҢ

БІР КЛАСЫ БОЙЫНША ЦИЛИНДРЛІК ОБЛЫСЫНДА ДИРИХЛЕ ЕСЕБІ

Аннотация. Жазықтықтағы эллиптико-параболикалық теңдеулер үшін шеттік есептер өте жақсы зерттелген ([1]). Дирихле есебінің корректілігі түрі мен ретті алып тұратын көп өлшемді эллиптико-параболалық теңдеулер үшін орнатылған [3]. Көп-өлшемді эллиптико-параболалық теңдеулер үшін жұмыс істеу түрі мен ретті өзгертумен рұқсат етілген және Дирихле есебін классикалық шешудің айқын түрі

Түйін сөздер: шешімділігі, аралас есеп, көп өлшемді эллиптико-параболалық теңдеулер, Бессель функциясы.

УДК 517.956 МРНТИ 27.31.15

алынған.

С.А. Алдашев, М.Н. Майкотов

Казахский Национальный Педагогический Университет имени Абая, Алматы, Казахстан

ЗАДАЧА ДИРИХЛЕ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ ДЛЯ ОДНОГО КЛАССА МНОГОМЕРНЫХ ЭЛЛИПТИКО-ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

Аннотация. Краевые задачи для вырождающихся эллиптико-параболических уравнений на плоскости достаточно хорошо изучены ([1]). Корректность задачи Дирихле для вырожденных многомерных эллиптико-параболических уравнений с вырождением типа и порядка была установлена в [3]. В работе для многомерных эллиптико-параболических уравнений с вырождением типа и порядка показана разрешимость и получен явный вид классического решения задачи Дирихле.

Ключевые слова: разрешимость, смешанная задача, многомерные эллиптико-параболические уравнения, функция Бесселя.

Information about authors:

Aldashev Serik Aimurzaevich, Kazakh National Pedagogical University named after Abay, professor, doctor of physico-mathematical sciences., aldash51@mail.ru, https://orcid.org/0000-0002-8223-6900;

Maikotov Mukhit Nurdauletovich, Kazakh National Pedagogical University named after Abay, doctoral student, specialty 6D060100-Mathematics, mukhit777@mail.ru, https://orcid.org/0000-0002-9739-5672;

REFERENCES

- [1] Picker G. To a unified theory of boundary value problems for second order elliptic-parabolic equations: Coll. translations. Mathematics, 1963, v.7, No. 6, pp. 99-121.
- [2] Oleinik O.A. Radkevich E.V. Equations with a nonnegative characteristic form, Moscow: Moscow University Press, 2010-360c.
- [3] Aldashev S.A. The correctness of the Dirichlet problem for degenerate multidimensional elliptic-parabolic equations // Mathematical Journal, Almaty, 2018, v. 18, No. 3 p. 5-17.
 - [4] Mikhlin S.G. Multidimensional singular integrals and integral equations, Moscow: Fizmatgiz, 1962 254 p.
- [5] Aldashev S.A. Boundary value problems for multidimensional hyperbolic and mixed equations. Almaty: Gylym, 1994. 170s.
- [6] Aldashev S.A. Darboux-Protter problems for degenerate multidimensional hyperbolic equations // News of universities. Mathematics, 2006, №9 (532) -p.3-9.
 - [7] Aldashev S.A. Degenerate multidimensional hyperbolic equations, Oral: ZKATU, 2007.139p.
 - [8] E. Kamke. Reference book on ordinary differential equations, M.: Science, 1965. 703 p.
 - [9] G. Bateman, A. Erdein. Higher Transcendental Functions, V. 2, Moscow: Science, 1974. 297s.
 - [10] Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis, M.: Science, 1976. 543 p.
 - [11] Tikhonov A.N., Samara A.A. Equations of mathematical physics: M: Science, 1966-724c.
- [12] Aldashev S.A., Mikotov M.N. The correctness of the Dirichlet problem in a cylindrical domain for multidimensional elliptic equations with degeneration of type and order. Proceedings of the V International Scientific Conference "Non-local boundary value problems and related problems of mathematical biology, computer science and physics." December 4-7, 2018 Nalchik, Kabardino-Balkaria, p.27.
 - [13] Smirnov V.I. The course of higher mathematics, Vol.4, d.2, M.: Science, 1981. 550 p.
 - [14] Friedman A. Partial differential equations of parabolic type. M.: Mir, 1968. 527 p.
 - [15] L. Bers, John F., Schechter M. Partial differential equations. M.: Mir, 1966. 351s.
- [16] Assanova A.T., Alikhanova B.Zh., Nazarova K.Zh. Well-posedness of a nonlocal problem with integral conditions for third order system of the partial differential equations, News of the National Academy of Sciences of the Republic of Kazakhstan. Physico-Mathematical Series.5:321(2018),33–41. https://doi.org/10.32014/2018.2518-1726.5