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UNIVERSAL POSITIVE PREORDERS

Abstract. In this paper, we investigate universal objects in the class of positive preorders with respect to
computable reducibility, we constructed a computable numbering of this class and proved theorems on the existence
of a universal positive lattice and a universal weakly precomplete.
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The class of positive (computably enumerable) equivalences, which is a proper subclass of the class
of positive preorders, first appeared in the paper of Yu.L. Ershov [1]. In recent decades, interest has
increased in a research of positive equivalences and positive preorders with respect to natural computable
reducibility(see, for example, [2], [3], [4] and [5]). In the class of positive equivalences, universal objects
are well-described (see [3], [4]), while universal preorders are poorly known, though attract huge interest,
both from the point of view of the computability theory, and for applications in theoretical computer
science. Our work is devoted to studying of positive preorders defined on the set of natural numbers w
with respect to computable reducibility, defined as follows: positive preorder P is computably reduced to
positive preorder Q (symbolically, P <. Q), if for any x, y € w there exists a computable function f such
that x P y if and only if f(x) Q@ f(v). A positive preorder is universal if any positive preorder reduces to
it. The first references to universal preorders meet in the work of Italian mathematicians F. Montagny and
A. Sorbi, [6].

We follow the standard notation from the book [7]: Post’s numbering of computably enumerable
(c.e.) sets is denoted by{W, },cw. ®e denotes the partially computable function of the Kleene’s numbere,
and the standard coding of pairs of natural numbers is denoted by (-,-). Through I(-) and r(-) we denote
computable functions that, by the code of the pair, restore its left and right components.

We briefly recall the basic concepts and introduce some notations used below in the paper.

Let S be some at most countable set, then an arbitrary map of the natural numbers w to the set S is
called the numbering of the family S. The numbering of the family S of c.¢. sets are called computable if
the set {{x, y): x € v(¥)}is c.e. set.

A positive preorder P is called universal in the class of preorders K if P € K and Q <, P forany Q €
K. For the preorder P, we denote by [x]p the equivalence class of x with respect to P, i.e.[x]p =
{y:xPy&yPx}.

By Id we denote the identical preorder{(x, x): x € w}, and by P; we denote the family of all positive
preorders.

If< is a partial ordering on some set M and x, y are elements of this set, then z € M is called the least
upper bound of the elements x, y(sup(x,y)), if x,y < zand Vt [x,y <t > z < t], and z € M is called
the greatest lower bound of the elements x, y(inf(x,y)),if z < x,y and Vt [t < x,y > t < z]. It is clear
that x < y if and only if sup(x, y) = y andinf(x,y) = x.
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Recall that a lattice is a partially ordered set, where any two elements have the smallest upper bound
and greatest lower bound.

If A is a set of natural numbers and n is a number, then A T n denotes the set A N {0,1, ..., n}.

Proposition 1. There is a computable numbering a of the family?; .

Proof. Fix some computable approximation {W;f}sc,, of the setW,. We will construct a computable
approximation {@°}s¢,, of the numbering  and the computable function b(x, s)as follows:

CONSTRUCTION

Stage 0.For any x € wwe seta®(x) = Id and b(x, 0) = nfor somen > 1.Go to the nextstage.

Stage s + 1.For allx < sdo the following: ifW,s I b(x,s)is a preorder, then we assumeas*1(x) =
a*(x) UWS T b(x,s)and b(x,s + 1) = b(x,s) + 1.We call this stage an “expanding stage” for a (x). Go
to the end of the stage.

End of stage For allx, s € wwe assume that

e a’t1(x) = a¥(x),ifa’*t1(x)is undefined;

o b(x,s+1) = b(x,5),ifb(x,s + 1)is undefined.

Go to the next stage.

Lemma 1.If for a(x) there are infinitely many “expanding stages”, then a(x) = W,.

Theproofisobvious.

Lemma2.a(x)is a positive preorder for any x € w.

Proof. Obviously, a®(x)is a positive preorder at cach stage s.There are two cases: the first, when for
a(x)there are infinitely many “extending stages™ . For this case, by Lemma 1, a(x) = W,. This can happen
only when W,is a positive preorder. And if the “expanding stages” are the finite number, then by
construction

a(x) = li;n a’(x) = as’ (%),

wheres'is the last “expanding stage™. It follows from the reasoning above that asl(x)is a positive
preorder.

Lemma 3.The numbering « is a computable numbering of the family P;

Proof. First, we prove that @ is a numbering of the family®; Let P € P be an arbitrary positive
preorder. Since P is c.e. set, there exists x such that P = W,.. Since W, is a preorder, then for a(x)there
are infinitely many “extending stages” Therefore, by Lemma 1, a(x) = W, = P. Moreover, the fact that
a is a computable numbering follows from the construction efficiency.

Corollary 1. The numbering a constructed in Proposition 1 is universal in the class Com(P;)of
computable numberings of the family P; .

Proof. Let 8 be an arbitrary computable numbering of the family P;. Since P; is thefamilyof c.e. sets,
then f < W,. Let f < W,via the function f. Then f < avia the function f. Indeed, for anyxf(x) is a
positive preorder. Since f(x) = W,y and Wy, is a positive preorder, then W,y = a( f (x)).

Corollary 2. There is a universal positive preorder with respect to computable reducibility <.

Proof. We construct the preorder U as follows:

xUyellx)=Il(y)&r(x) a(l(x)) r(y)

We show that any positive preorder P is computably reduced to U. Since P is a positive preorder,
then there exists e such that a(e) = P.Consequently,P <. Uby the function f(x) = (e, x). m

Consider special types of positive preorders:

We say that a positive preorder P is a positive linear order if the factor set w/ER(P)with the preorder
<pgiven by the rule:

[x]zrpy <p WErEp) © 395’33”(95’ € [xlzrpy&Y' € [Ylgrpp)&x'P 3”)

is linearly ordered.
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Definition. A positive prelattice is called a positive preorder P whose factor structure (w/
ER(P),sup,inf,<p) is a lattice and the functions sup andinf are partially computable. Here by ER(P)
denotes the greatest equivalence, which is contained in P, i.e. ER(P) = {(x,y): xPy & yPx}.

Positive linear preorders, which are a frequent case of positive prelattices, are defined similarly. We
say that a positive preorder P is a positive linear preorder if the factor set w/ER(P) with the preorder <p
given by the rule:

[(X]erp) <p [VIEr(P) © 395’33”(95’ € [x]grr) &Y' € [V]gr(p)&x'P 3”)

is a linearly ordered set. The existence of a universal prelattice in the class of positive linear preorders
was proved in [8].

Theorem 1.Let R be the family of all positive prelattices. Thereexists a family 7 € R and a
computable numbering of the family T such that for any R € R there exists a prelattice T € T for which
R<.T.

Proof. If R is a prelattice and T € R, then by [T] we denote the closure of the set T with respect to
sup and inf . Note that for any prelattice R and any finite set T € R, the closure [T] is also a finite set.

Let 7 be the computable numbering of the family of all positive preorders and let {7°(x)}¢e,, be the
computable approximation of the preorder m(x). We construct an approximation of the computable
numbering « and the family T as follows:

CONSTRUCTION

Stage 0. We definea®(x) = Idfor allx € w.The set {0,1} is declared the effective range of the
7°%(x).Go to the next stage.

Stage2s + 1. Consider the following cases:

Case 1. If the effective range of w5 (x) is a prelattice, then copy the effective range to a*1(x), i.e.we
select the fresh (has never been used up to this point) elements a; for all { from the effective range of
7% (x).The smallest number nwhich is outside the effective range of 75(x) is added to the effective range
ofrS*1(x). Go to the next stage.

Case 2.If the effective range of 7°(x) is not a prelattice, then add all the supandinf elements of the
effective range of 5 (x) to the effective rangeof 51 (x), if there are any. Go to the next stage.

Stage2s + 2. Choose the least number n € range{a;}and declare this element equivalent to the
element 0. Go to the next stage.

Lemmal.For any x € w, a(x) is a positive prelattice.

It's not so hard to show, since we copy only the positive prelattice to the elements a;, and all other
clements are equivalent to 0. Forarbitraryelementsx, y:

1) Ifx = a;andy = a;for some i, j, thensup(x,y) = sup(al-, aj) = g, wherek = sup(i,j)in the
cffective range ofr(x).

2) Ifx = a;andy € range{a;}.thensup(x, y) = sup(a;, 0) = aiwherek = sup(i, 0)in the effective
range ofrr(x).

3) Ifx ¢ rangef{a;}andy = a;forsomej, this case is similar to case 2.

4) Ifx, y € range{a;}, thensup(x,y) = inf(x,y) = 0.

For infwe carry out a similar reasoning.

Lemma?2.If (x) is a positive prelattice, then atstages2s + 1, case 1 is repeated infinitely often and
case 2 cannot be repeated infinitely times without case 1.

The proof follows from the remark about the finiteness of the closure of finite sets.

Lemma 3.Forany R € R, there exists a number x such that R <, a(x).

Proof. Since R is a positive prelattice, then by Lemma 2 case 1 is performed infinitely often and all
clements of R. will enter the effective range R. Therefore, reducibility is carried out bythe function

f(x) =a, m
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Theorem 2. In the class of positive prelattices, there is a universal prelattice.
Proof. Let @ be the computable numbering of the family T of positive prelattices. We construct a
positive prelatticelU as follows:

xUyelx)<l(y)v [l(x) =l(y)&r(x) a(l(x)) r(y)].
If P is a positive prelattice, then P <. a(e) for some e and a(e) <. U by the functionf (x) = (e, x).
It remains to prove that the positive preorder U is a positive prelattice. Let[x], and [y],be two different
equivalence classes. Ifl(x) = [(y) then the sup and inf of these classes coincide with the sup and inf in
the positive prelattice a(l(x)). Ifl(x) < I(y), thensup([x]y, [yly) = [ylyandinf([x]y, [y]y) = [x]y. The
case when [(x) > [(y) is similar to the previous casc. B

The following special type of positive preorders is weakly precomplete positive preorders.

Definition. A positive preorder P is called weakly precomplete [8], if for any total function ¢,, there
exists an element x,such that ¢, (x,)Px,.

Note that the concept of weaklyprecompleteness for positive preorders is identical to this concept for
positive equivalences, which was originally introduced in [9]and found to be very useful in the study of
positive equivalences (see review [4]).

Theorem 3.For any positive preorder Pthere is a weakly precomplete positive preorder @ such that
P <. Q.
Proof. Let P be an arbitrary positive preorder. We construct a positive preorder Q as follows:

CONSTRUCTION

Stage 0. LetQ® = P@Id. Go to the next stage.

Stages + 1.Letl(s) = e.We work withg,.

Letx, = 2e + 1.

1) Ifps (x,) TthenQs*! = Q5 U PST1®Id.

2) Ifps(x.) 4, thenQs* = Q5 U PS* 1 @ Id U {(@e(xe), Xe), (Xe, 0o (xe))Iwe  reflexively  and
transitively close. Go to the next stage.

By construction, it is casy to see that the preorder @ is positive and the computable function f(x) =
2xperforms the reduction P <. Q. m

Corollary. In the class of positive preorders P;there exists a universal weakly precomplete preorder.

The research of all authors was carried out with the financial support of the Ministry of Education
and Science of the Republic of Kazakhstan, grant AP05131579 “Positive preorders and computable
reducibility on them, as a mathematical model of databases™
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YHHUBEPCAJIBHBIE ITO3UTUBHBIE NPEAITIOPAJIKHA

Annoranus.B pabote mccnenyroTCsl yHHBEPCAIbHbIC OOBEKTHI B KIACCE MOZUTHBHBIX MPEANOPIIKOB OTHOCH-
TEABHO BBIMHUCIMMOIN CBOAMMOCTH, CTPOUTCSA BBIMHCIHMASA HyMEpAIHs 3TOr0 KIAcca, JAOKA3BIBAOTCA TEOPEMBI O
CYILECTBOBAaHUM YHHBEPCAIBHON NMO3UTUBHOM PEIIETKHH Y HUBEPCAIbHOIO CIa00 MPEANOIHOIO MPeanopsIKa.

KimoueBplecsioBa. Beruucanmasi CBOAMMOCT HA MPEATIOPSIKAX, YHUBEPCANIBHBIH MO3UTHBHBIN IPEANOPSIOK,
BBIUHMCIMMAS HyMEPALHS, TO3UTHUBHAS PEIICTKA, MO3HTUBHBIA JTHHCHHBIH NOPSIIOK, CIa00 MPEIOTHBIN TO3UTHBHbIH
MPEAMOPSIOK.

C.A.Baxaes', B.C. Kanvyp3aes', LK. Kagourkanora', K.III AGemen®

'sn-Dapabu arsmarsr Kazak YITTHIK yHEBEpCHTETI, ATMaThl, Kasakcram;
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YHUBEPCAJI IIO3UTHUB KAPTBI PETTEP

Annotamus, JKyMBICTa TIO3UTHB >KAPTHI PETTCP KIACHIHIA CCCMTCIIMIUTIK KOIIipyaep OOHBIHIIA YHUBCPCA
0OBEKTLIEPl 3epTTeneni, Oy KIACTBIH ECENTENIMIlI HOMIpIeyl KypbUIaabl, YHHBEPCANl MO3HTHB TOPJIAP >KOHE
VHHBEPCAT >KaPThIJIAH TOIBIK >KAPTHI PETTEP TAOBLIATHIHABIFGI TYPAJIBI TEOPEMA TONICIIACHE ]

KimoueBnie cioBa. JXKaprsl perrepaeri ecenremiMal KOImipy, YHHBEPCAT HMOZHTHB KAPThl PET, SCENTEIIMAI
HOMIpJICY, IO3UTHUB TOP, MO3UTUB CHI3BIKTHIK PET, KAPTHUIAH TOJBIK MMO3UTUB KAPTHI PET.
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