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RIEMANNIAN METRIC FOR TEXTURE RECOGNITION

Abstract. The article discusses the recognition of textures on digital images by methods of computational
topology and Riemannian geometry. Topological properties of patterns are represented by segments (barcodes)
obtained by filtering by the level of photometric measure. Beginning of barcode encodes level at which topological
property appears (connected component and/or “hole™), and its end - level at which the property disappears.
Barcodes are conveniently parameterized by coordinates of their ends in rectangular coordinate system “birth” and
“death” of topological property. Such representation in form of a cloud of points on plane is called a persistence
diagram (PD). In the article show that texture class recognition results are significantly better compared to other
vectorization methods of PD.
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To describe the patterns of digital images, we use TDA - Topological Data Analysis [1,2]. TDA does
not require any a priori assumptions about nature of data source and allows to extract new knowledge
from changingshape of neighborhoods of points in space of features.

The approach is associated with persistent images [3], using Riemannian metric to calculate distances
between persistence diagrams (PD) is based on analogy, which originates in quantum mechanics (Figure 1).
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Figure 1 - Experience with two slots[4]

Electronsfromgunpass through plate with two slots.Incasewithoutabsorber, wave interference is
described by joint distribution Pl - Presence of detector leads to double-humped distribution

B+h#h,

In quantum mechanics introduces a probability amplitude £ = |(/)l.|2 Assuming that amplitudes from
two slits add up, we obtain:
2 2 2 2
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Probability density defined on persistence diagrams does not form vector space. But if we introduce
additive probability amplitudes, then we can transfer them to Hilbert unit sphere. The distance on such
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sphere does not depend on the choice of beginning of coordinates and number of points in compared
diagrams.

The approach that realizes this idea is based on positive definite multiscalekernel [5,6].1t is reliedon
the vector representation of persistence diagram in the form ofpersistent image (PI).Since each PD
consists of set of points in 2D, we start by creating a two-dimensional probability density function (pdf)

using Gaussian kernel with zero mean and variance o’ For each probability density function, we
calculate the representation in the form of square root@(x) = +/ pdf In this case, persistence diagram, as

clement of geodesic ¥ between the compared diagrams X and Y, can be written as:

y(s) = (1= 9$)x +s4(x), )

where X - point on diagram X , ¢(x)is corresponding point of diagram Y , and s € [0,1] parametrizes
the geodesic.
Without loss of generality we assume that all probability density functions lic in[0,1]*> The analyzed

space of probability density functions is:
1 1
P = {p:[01]x[01] > R} Vx,y | p(x,3) =0, | [ p(x, y)dxdy =1 3)
0 0

Transition from pdf to probability amplitudes is closely related to so-called Fisher-Rao information
metric.For discrete probability space Fisher metric can be considered simply as Euclidean metric bounded
by positive "quadrant" of unit sphere after corresponding change of variables.Consider Euclidean space

y=( Yoo Yn) € RNJrl . The metric will be defined by quadratic form:

N
h= Zdyidyi , )
i=0

where dy, is 1-forms, which form basis in co-tangent space.

0 . .
Denote bya— basis vectors in the tangent space, so that:

yj
0
dyj (ay—j = 5]‘1{ : (5)
k
Define N -dimensional unit sphere embedded in the (N + 1) -dimensional Euclidean space as:
2=l (7)

This embedding induces metric on sphere, which follows directly from Euclidean metric of
surrounding space.Introducevariable change p, = yf .
The equation of sphere then takes the form of a condition of the probability normalization:

>p =1, (8)
and metric becomes:

l—dp.dp, 1
h=3dy,dy, =Y d\p,dyp; 72%=Zzpid<logpi)d<logpi>. ©)

— ] ——



ISSN 1991-346X Cepusa gusuxo-mamemamuyecxkas. Ne 6. 2018

The last expression represents a quarter of Fisher's information metric[7]. Probabilities are parametric
functions of the manifold of variables€ hys P, = p,(€). Then we obtain the induced metric on
parametric manifold:

=2 pidlog, @¥ilosp @) =3 T3 p 0 2R L0 as a6, 10

k

or in coordinate form Fisher's information metric is determined by the tensor:

o0, " 00

Geodesic in Fisher metric is difficult to compute. Therefore, we will use representation proposed in
the paper [8]. It strongly simplifies subsequent calculations. Instead of probabilities, we will consider the
space:

g2,.0)= 4hﬁSh” 4h[ ¢ 8} (11)

¥ =y [01]x[0,1] > R} |y =0, Hj It//z(x,y)dxdy =1 (12)

For any two tangent vectorsv).v, € Tv,(‘{’) , Fisher-Rao metric is defined asscalar product in Hilbert

space:

o!—.._A

= [ [o,(x, ), (x, y)elxdy. (13)

It implies that representation in the form of square rooty = J; makes space a unit Hilbert sphere

with a given metric in the form ofscalar product.For two points {,,1/, in such space, geodetic distance
between them is defined as:

dyW.y,)= cos™ (<1//1 ¥ >)> (14)

where in calculating the scalar product of two pointsy/,,/, we normalize scalar product using
standard Frobenius norm. Computational complexity for such distances between persistence diagrams
increasesas O(K”° ), for K x K discretization on [0,1]*. Increasing of K leads to increasing ofaccuracy of
determination of distances, but increases computational complexity.

Numerical results.For the experiment, we chose the value of resolutionparameter of persistent
images K =200. Fromstandard image database [9] four texture classes were selected, two of which
contain vegetation images and two - images of inanimate nature. Each class contains 40 images.

In experiments,we calculated the average value and variance of Riemannian distances of PI both
within each class and pairwise for all pairs of texture classes.When calculating the distance between two
classes, Riemannian distances between all possible pairs of PI textures of two compared classes are
computed.

The results are shown in the table Thus, firstly, all distances between PI of textures within one class
are computed. Then, all pairwise distances between PI of textures of different classes are calculated. The
average distances between the corresponding PI for Betti 0 and Betti 1 within the class are less than
corresponding distances to PI from another class.

However, variances within classes are quite high. Therefore, there may occur cases when Riemannian
distance between two arbitrarily taken textures from different classes may be less than the average
distance inside the class.For practical use, it is usually necessary to determine the aboutness of not two
separately taken textures, but belonging of the considered sample to certain class of textures: grass,
stones, water, etc.In such a case, it is appropriate for classes building ofaveraged topological
features. Average distances and variance within each of the classes are shown in the table.
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Table-Mean and variance of Riemannian distance between all pairs of persistent images (PIs) of textures of 4 classes

PBo>=11.7 Bo>=29.0 Bo=253
o(Po)=3.9 o(Po)=4.4 o(Po)=5.2
<B>=12.9 <B>=23.3 <B>=13.9
o(p)=2.9 o(p)=5.3 o(p1)=3.8
PBo=11.7 Bo=32.8 <Bp>=293
o(Po)=4.7 o(P)=29 o(fo)=4.8
<B,>=7.8 <B,>=26.0 <B,>=19.0
o(p)=3.1 o(p)=3.0 o(p)=2.3
PBp=10.1 B,=383
o(Bo)=11.7 o(Bo)=4.7
<B>=13.9 <B>=22.6
o(p)=6.6 o(pr)=4.8
B=23.6
(Bo)= 15.1
<p>=16.1
o(p)=7.7

In the lines and columns there are 4 classes of textures. The numbers indicate the texture class
number. Diagonal elements correspond to distances between Pls of textures inside the class.Off-diagonal
clements correspond to pairwise distances between Pls of textures of the two correspondingtoline and
columnofclasses. Mean value and variance are calculated separately for Riemannian distances of PI of
Betti 0 and Betti 1.

Conclusion. Obtained results show that the described approach allows, bypassing large
computational complexities, to classify reliably the textures even without the use of machine learning
methods.

The work has been done due to support of grant NeAP05134227 of MES of RK.
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"MHCTHTY T ME(OPMATMOHHBIX H BBMHCIHTETbHEIX TexHoTorui KH MOH PK;
*Vampepcutet Konkyk, FOsxmas Kopes, Ceyn

PUMAHOBA METPHUKA J1JIAA PACIIOSHABAHUA TEKCTYP

Annoramusa. B cratee 00CYKTacTcs pacmO3HABAHHC TCKCTYP HA IH(POBBIX H300PAKCHHAX MCTOJTAMH
BBIMUCIIHTCIBHON TOMOJIOTHH M PHMAHOBOM reoMeTpHH. TONOIOrMYECKHE CBOHCTBA MATTCPHOB IPEACTABICHBI
oTpe3KkaMu (0apKoAaMH), TOIYUCHHBIME TIPH ()MIBTPALMH 1O YPOBHIO (hoTOMETpHdeCKOor Mepsl. Hauamo Gapkoaa
KOJUPYET YPOBEHb HA KOTOPOM IOSIBIISIETCS] TONMOJIOTHIECKOE CBOMCTBO (KOMITOHEHTA CBSI3HOCTH W/HIH «IBIPa»), a
€ro KOHEIl — YPOBEHb HA KOTOPOM CBOWCTBO HCUe3acT. bapkoasl yToOHO mapaMeTpH30BaTh KOOPAMHATAMH HX
KOHIIOB B TNPSMOYTOJBHOH CHCTEME KOOPAMHAT «POKACHHE» M «CMEPTH» TONOIOTHYECKOrO CBOHCTBA. Takoe
MPSACTAaBICHUE B (DopMe 00MaKa TOUCK HA IUIOCKOCTH, HA3BIBAKOT auarpaMmmoil mepcucteHtHocTH ([I1). B crartee
MOKA3aHO, YTO PE3yJbTaThl PACIO3HABAHHS KJIACCOB TEKCTYP CYMICCTBEHHO IYYIIC, IO CPABHCHHIO C IPYTUMH
cniocobamu Bekropm3armu JI1.

KimoueBnie ciioBa: PumaHoBa MeTpHKa, AmarpaMMa TEPCHCTCHTHOCTH, (DYHKUHS IUIOTHOCTH BEPOATHOCTH,
TMCPCUCTCHTHOE M300paxkeHue (ITH).
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KIIAPATTHIK KOHC CCCIITC 11 TEXHOJIOTHSIIAP HHCTHUTY THI;
'Axnay y TyTHI:
Komkyk Yrusepcuteri, Ourycrik Kopes, Ceyn

TEKCTYPAJAP/JBI TAHY YIINIIH PAMAHMETPUKACHI

Annortamust. Makanaga caHabelk OeHHEIepAeri TEKCTYpaIapabl €CENTEY TOMOIOTHS XoHE PUMaH reoMeTprsich
OMICTePIMCH TaHY TAIKBLUIAHAMBL [laTTepnepaiH TOMOMOTHAIBIK KACHCTTCPI (DOTOMETPHSIBIK OJIIICM JACHTCHI
OOHBIHINA CY3y KE3iHIC aJBIHFAH KeciHminepMeH (OapkoarapMeH) OcpiareH. bBapkoarsiH 0ackl TOMOMIOTHSIBIK CHITAT
(OalimaHbIC KOMIIOHCHTI >KOHE/HeMece "Tecik") maima O0JaThIH ACHTCHII, aT OHBIH COHBl — CHIIAT >KOFANATHIH
JeHTeH i KoaTaiasl. baproaTapabl TOMOIOTHSIIBIK KACHETTIH "Tyy" »oHE "emM" KOOPAMHATTAPBIHBIH TiKOYPBIITHI
JKYHECIHZIET1 OJIAPABIH, YINTAPBHIHBIH KOOPIMHATTAPBIH MAPAMETPIICYTE bIHFAHBL. JKa3bIKTHIKTAFBI HYKTECICPAIH OyIIT
TYpiHZeTri MyHIal kepiHic mepcucTeHTTik auarpamma (I1/1) nen aramaner. Makaraga 6acka [JI1 Bexropuzamms dic-
TEPIMEH CAIBICTBIPFAH/IA, TEKCTY PAHBIH CHIHBINTAPBIH TAHY HOTIDKENIEPI Al TaPIBIKTAH KAKChI CKEHITI KOPCETLITEH.

Tyiiin ce3nep: PumaH METpHKACHl, NMEPCHCTECHTTIK AMATPAMMACHL BIKTHMAJIBIKTBIFBI3ABEDI (DY HKIMICHIL,
mepeucterTTideitnenep (I16).
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