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MULTIPERIODIC SOLUTIONS OF LINEAR SYSTEMS
INTEGRO-DIFFERENTIAL EQUATIONS WITH
D_-OPERATOR AND ¢-PERIOD OF HEREDITARY

Abstract. The article explores the questions of the initial problem and the problem of the multiperiodicity
solutions of lincar systems integro-differential equations with an operator of the form
D =3[0t +c dfot +...+¢, 0for,. c=(c,.....c,)—const and with finite hereditary period & = const > 0 that

describe hereditary phenomena. Along with the equation of zeros of the operator /) are considered linear systems

of homogencous and inhomogencous integro-differential equations, sufficient conditions are established for the
unique solvability of the initial problems for them, both necessary and sufficient conditions of multiperiodic
existence are obtained by (z,¢) with periods (0, ) of the solutions. The integral representations of multiperiodic

solutions of lincar inhomogencous systems are determined 1) in the particular case when the corresponding
homogeneous systems have exponential dichotomy and 2) in the general case when the homogeneous systems do not
have multiperiodic solutions, except for the trivial one.
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1.  Problem statement.
In this paper, we’ve researched the problem of the existence of (19, a)) -periodic solutions (T 1 ) by

(T,f) (Tt . m)ERXRX---XRZRXRm systems of

9b1 9.
Dcu(r,t) (z' t)u(z' )+ jK 7,1,8, t—cz'+cs)u(s t—cz'+cs)ds+f(z' t) (1.1)

with a differentiation operator D), of the form

D, =0/ot +{c,0/or), (12)
that turns into the operator of the total derivative d / dT along the characteristics { = CT — ¢S + O with
initial data (S, O') € Rx R", where R = (— OO,+OO), o= (C1 yeees Cm) is constant vector with non-
zero coordinates €, J = I,—m , a/al = (a/al1 yenns a/alm) is vector, <C, a/af> is the scalar product
of vectors, A(T t ) and K (T 1,8, 0 ) are given 71X M -matrices, f (T N ) is 7 -vector-function,

(49 5 a)) = ((9, 72 N /) ) is vector-period with rationally incommensurable coordinates, & is positive

constant.
The problem of this kind involves the research problems of hereditary vibrations in mechanics and
electromagnetism. For example, if the oscillation phenomenon is hereditary in nature, then the equation of
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motion of the string at a known moment m(r ) is set by changing the angle of string torsion CO(T ),
subordinated to the ratio

dz
m(r)—,u%gr) ho(r I(o z,5)o(s)ds (1.3)

where £/ and h are constants and & is the hereditary period of the vibrational phenomenon.
It is also known that the hereditary biological phenomenon “predator-prey” - (N LIV, ) is related by
the law of oscillations described by the system of equations

dL(TLN(){E—%

dr

]E (= )N (s)ds},

T—

1.4)

dr

Where &€,,&, and ¥, ), are constants, /| and [, are functions vanishing zeroat 7 —S§2=¢, &

is the period of hereditary nature of the biological phenomenon under consideration.
Obviously, the above integro-differential equations (1.3) and (1.4) are particular cases of the
mathematical model hereditary phenomena described by the system of equations

%—P IQTS s)ds +w(z) (1.5)

W)y, ){_g 1 N()+ [E(e- 5N, (s )ds}.

T—€

relatively sought 72 -vector-function with given 7 X 7 -matrices P (T ) and Q(T , S ) and with 72 -vector-
function ¥/ (T ), where & > 0 is a constant. Since the process is oscillatory, as a rule, the matrix P (T )
and the vector function {/ (T ) are almost periodic in general case and the kernel Q(T , 8 ) has the property
of diagonal periodicity by (T , S) eRXR.

In particular, the indicated input data of system (1.5) are quasiperiodic by 7 € K with a frequency
basis V, = o' V=0, ' ooV, = C(),;1 , then in the theory of fluctuations, the question of the existence
of quasiperiodic solutions X(T ) of system (1.5) with a modified frequency basis is important

21971,171 =Cla){l,...,l7m =cma);l andweset <O =0, <o, <...<0,.

An important role in solving this problem is played by the well-known theorem of G. Bohr on the

deep connection between quasiperiodic functions and periodic functions of many variables (multiperiodic
functions). According to this theorem, matrix-vector functions are defined

A=A(T,Z),K=K(T,Z,S,O'), oc=1l—-cT+cCs, fzf(T,t), uzu(T,t) with properties of
A|t:cr :P(T)’ K t=ct :Q(T’S)’ ft:cr = W(T)’

replaced by a differentiation operator D, of the form (1.2).

u|,_ =x(z') and the operator d/d7 is

Thus, the problem of quasiperiodic fluctuations in systems (1.5) becomes equivalent to the problem
on the existence of (19, a))-pen'odic by (T 1 ) solutions % (T i ) of the system partial integro-differential

equations of the form (1.1) with differentiation operator (1.2).

The above examples of problems on string vibrations and fluctuations in the numbers of two species
living together associated with the task indicate the relevance of the latter, in terms of its applicability in
life. Along with this, it is worth paying special attention to the fact that the methods of researching
multiperiodic solutions of integro-differential equations and systems of such partial differential equations
belong to a poorly studied section of mathematics. Therefore, the development of methods of the theory
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of multiperiodic solutions of partial differential integro-differential equations is of special scientific
interest.
In the present work are investigated to obtain conditions for the existence of multiperiodic solutions

of linear systems integro-differential equations with a given differentiation operator D, . To achieve this

goal, the initial problems for the considered systems of equations are solved from the beginning, and then
the necessary and sufficient conditions for the existence of multiperiodic solutions of linear systems
equations are established. The integral structures of solutions linear inhomogencous systems with the
property of uniqueness are determined.

The theoretical basis of this research is based on the work of several authors. As noted above, taking
into account the hereditary nature of various processes of physics, mechanics, and biology leads to the
consideration of integro-differential equations [1-16], especially to the research of problems for them
related to the theory of periodic fluctuations [8, 9, 12, 13]. If the heredity of the phenomenon is limited to
a finite period & of time 7, then the hereditary effect is specified by the integral operator with variable
limits from 7 — & to 7.

Integro-differential equations describing phenomena with such hereditary effects are considered in [3,
6, 12, 14]. The various processes of hereditary continuum mechanics are described by partial integro-
differential equations, the study of which began with the works [1, 2, 4].

The work of many authors is devoted to finding effective signs of solvability and the construction of
constructive methods for researching problems for systems of differential equations, we note only [17,
18].

The research of multi-frequency oscillations led to the concept of multidimensional time. In this
connection, of the theory solutions of partial differential equations that are periodic in multidimensional
time is being developed, both in time and in space independent variables [19-35]. It is known that the
system of canonical Hamilton equations, under fairly general conditions, can be solved by the Jacobi
method, the essence of which is the transition from its integration to the integration of a partial differential
equation. A similar approach is implemented in [19], where quasiperiodic solutions of ordinary
differential equations are studied with a transition to the research of multiperiodic solutions of partial
differential equations. This method was developed in [20-30] with its extension to the solution of a
number of oscillation problems in systems of integro-differential equations.

In this research, it is examined for the first time that the problem of the existence multiperiodic

solutions of systems integro-differential equations with a special differentiation operator 1), describing

hereditary processes with a finite period € of hereditary time 7 .

In solving this problem, we encountered the problems associated with the multidimensionality of
time; not developed general theory of such systems; determination of structures and integral
representations of solutions of linear systems equations; extending the results of the lincar case to the
nonlinear case; the smoothness of the solutions integral equations equivalent to the problems under
consideration, etc. These barriers to solving problems have been overcome due to the spread and
development of the methods of works [31-35] used to solve similar problems for systems of differential
equations.

2. Zeros of the differentiation operator and their multiperiodicity.

By the zero of the operator 1), we mean a smooth function # = U\T,1 ) satisfying the equation of
Du=0. Q2.1
The linear function
t=hlr,7°,0°)=1"+cr—ct" 22)
is a general solution of the characteristic equation df / d7 = ¢ with the initial data (T 0 5 t° ), and its

integral obtained from equation (2.2) by relative solution / 0 type of the form
h(ro,r,t):t—cz'+cro (2.3)

T:TO

is the zero of the operator 1) satisfying condition h(T 0 LT, 1 X =1.
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It is also easy to verify that if ¥/ (l ) is an any smoothness function € = (1, cee ,1), by
[ = (fl,...,fm)e Rx...x R=R" then the function

u(ro ,T, t)= 1//(h(r° .7, t)) (2.4)

70}

Since the function ¥/ (l ) is arbitrary in the class C t(e)(Rm) of functions smoothness € by £ € R”

is the zero of the operator 1), satisfying condition of %

relation (2.4) is a general formula of the zeros of the operator D, .
In connection with the research of question on multiperiodicity of the zeros operator [, attention

should be paid to the following properties of the characteristics h(S, Tt ) of operator D _:

h(s +0,7+ (9,1): h(s, r,t), (2.3)
W(s,7+6,t)=h(s,7,t)-cb. (2.6)
Ws,t.t+qw)=h(s,t.t)+qo, (2.7)

which follow from the linearity of the function (2.3), where q@ = (qla)l senss ., @, ),
q =(q1,...,qm)e X XL=/L",7 areset of integers.
If u(r N ) is the zero of operator D (19, a)) -periodic by (T 1 ), then the initial function

Uu

e = u’ (t) is @ -periodic by [ :
u'(t +qo)=u"(t)e C(R" ) .qe 2" (2.8)
Therefore, condition (2.8) is a necessary condition for the (19, C()) -periodicity of zero
u(r,t)e C(Rx R™).
Suppose that for zero u(r 1 ) of the operator ) the necessary condition is satisfied (2.8) for its
(19, a)) -periodicity by (T 1 ) Then U (T 1 ) according to formula (2.4) has the form of
u(t,t)=u’(h(z°,7,1)). (2.9)
Obviously, by virtue of conditions (2.7) and (2.8), the researching zero (2.9) is @ -periodic by ¢ . For

a zero M(T N ) to be @ -periodic by T, we require that condition
u"(h(c*, 7 +60,0)=u’(h(z°. 7,1) - c0) (2.10)

which holds by virtue of property (2.6).
From this it is clear that, under condition (2.8), relation (2.10) holds if only some integer vector

q ® € 7" is found and equality

cO+q'w=0, (2.11)
which means the commensurability of the ¢@ = (01(9 yeees Cm¢9) and @ = (a)1 yeees O ) vectors.
It should be noted here that condition (2.11) is required if the initial function u’ (l ) necessarily

depends on the variable 7 . Otherwise, when u’ = const , condition (2.10) is performed automatically,
conditions (2.11) are not needed.
Thus, if conditions (2.11) are not satisfied, then the (19, C()) -periodic zero of the operator ), are

constant.
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Obviously, due to the condition of (2.5), the zeros M(T ¢ LTt ) of operator D form (2.4) have the

property of diagonal @ -periodicity by (TO , T): M(To +6,7+86, f) = M(TO ,T,f).
The proof of this property follows from (2.5) and (2.4) based on direct verification.
The obtained results are summarized in the form of the following theorem.

Theorem 2.1. 1) If condition (2.11) is not satisfied, then only constants are the ((9, a))—periodic zeros
of the operator D, and it does not have multiperiodic variables zeros. 2) If condition (2.11) is satisfied,
then any zero of the operator D, with an initial function of the form (2.8) is ((9, a))—periodic, in
particular, it can be any constant. 3) Any zero of the form (2.4) has the property of diagonal 6 -periodicity
by (TO s T), and from its @-periodicity zeros by T follows its @-periodicity by 7’

Further, in conclusion, we note one more important group property of characteristic

h(z®, & (& 7.0))=h(z°,7.1), (2.12)

necessary in the future, in justice, which can be verified by direct verification.
3. Linear homogeneous equations and their multiperiodic solutions.
We consider the initial problem for a linear homogeneous system

Dcu(r,t) (z' t)u T, t IK 7,1,8, h(s T t))u(s,h(s, z',t))ds (3.1

with respect to the desired 77 -vector-function M(T N ) with condition

ulz,t) —u'(r)eC(R") (3.1

under assumptions of
Az +6,t+qo)= Ar,t) e C*2(RxR"), g 2", (32)
K(r+0,t+qa),s,6):K(r,t,s+0,6+qa)):K(r,t,s,a)
e Cl0202) (R><R’” ><R><R’”) geZ"

7.1,8,0
(3.3)
where 7° € R.
It is obvious [19, 20, 21, 28, 29] that under condition of (3.2), using the method of successive
approximations, we¢ can construct a matricant W(TO ,T,1) of the linear system of partial differential
equations of the form

D w(z,1)= Az, 0)w(z, 1), (3.4)
which has property

DCW(TO ; r,t): A(z',t)W(ro ; r,t), W(ro T ,t): E, 3.5)
DWWz, ,t)=—Ww ' (z°,7,0)Az,1), (3.6)
W(r“+6’,r+6’,t+qa)):W(r°,r,t),qu’”, (3.7)

where [ is the identity 72 -matrix.

Then, using the replacement of

u(z,t)= W(TO ,T, t)v(r, 1) (3.8)

system (3.1) is reduced to the form of integro-differential equation

— 110 ——



ISSN 1991-346X 6. 2019

D(z.1)= [O(c° .t,5.h(s, 2.0)(s. h(s. 7.1))ds (3.9)
with the kernel -
Q(Z'0 ,TLL,S, 0') =W (2'0 ,r,t)K(r,t, s, O')W(TO,S, 0'), (3.10)

which, due to the properties (2.5)-(2.7) of the characteristics h(S, Tt ), (3.3) of the kernel K (T 1,8, 0 )
and (3.5)-(3.7) matricant W(T 0 LT, ), has the properties of multiperiodicity and smoothness of the form

Ole° +0,7+0,t +qo,s +6,h(s +0,7+6,t +qw))=

:Q(ro z,1,8,h(s,7 t)):Q(ro r,t,s,O')e
eC““e(RxRxR’”xRxR )qu’”. (3.11)

T°,7,1,8,0

Further, under condition (3.3), integrating along the characteristics: 7 =177, [ = h(?],‘[ ) ), using
property (2.12) of the form h(f 5 1 h(?], N ))= h(f LTt ), from equation (3.9), using the method of

successive approximations, we find its matrix solution V(S, 7,1 ) based on the integral equation

Vis.et)=E + [dp [ O(s. . h(n. 7.0, & H(E 2. O (. £, (E et )dE . 312

s g8

and by virtue of properties (3.11) of the kernel Q of this equation, we easily have the following relation

Vis+6,7+6,t+qw)=V(s,1,t)e Cs(f;f;e)(Rx RxR" ), geZ". (3.13)

Obviously, by virtue of (3.12) and (3.13), we have
DV (s,z,t)= j Ols, 7,6, &, h(& 2,0 )W (&, h(E,7,1))dE . (3.14)
V(s,s,t)zE. (3.14%)

We note that the matrix A4 , the kemnel K , and the period & are such that the matrix V(S, 7,1t ) is
mvertible, moreover

DV (s,z,6)==V"(s,7,1)- DV(s,7,6)- V' (s,7,1). (3.14)

Then the matrix
U(s, z',t): W(s,z',t)V(s, z',t), (3.15)
constructed on the basis of the replacement (3.8) is invertible, satisfies the equation (3.1), becomes the

identity matrix £ at 7 = 5, and has the property of diagonal &-periodicity by (S, T ) and @ -periodicity
by [ :

DU(s,7,0)= Al Y (s,7.1) + jK (.0, &, h(E, 7,0V (E (2, 7,0 )dE

(s,s,t) E, (3.16)
U(s+9,r+9,t+qw) (s,r,t)eCl”)(RxRxR’”),qu’”. (3.17)
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These properties of (3.16) and (3.17) matrix {/ (S, T,t ) are consequences of the properties (3.5)-(3.7)
and (3.13), (3.14), (3. 140) the matrices W(S, T, l) and V(S, T,l).
The matrix {J (S, T,t ) can be called the resolving operator of the integro-differential system (3.1).
Theorem 3.1. Let conditions (3.2) and (3.3) are satisfied. Then the solution u(TO ,T, Z) of the initial
problem (3.1)-(3. 1° ) is uniquely determined by the relation
u(ro,r,t)zU(TO,T,t)uo(h(ro,r,t)). (3.18)
Proof. By condition (3. 10), in accordance with formulas (2.8) and (2.9), the vector function

u’ (h(TO T, t)) is the zero of the operator D _: Dcuo(/’l(fo T, f))E 0.
Given this, by virtue of relations (2.12), (3.16) and expression (3.18), we have

D" (h(z°,z,0))= A(r,))U(e" 7,0 )" (k2" 7.,0)) +

e TRt EHE W EHE iz (e 2.0)=

T—&

= Al (e 20+ [K (et £ W(EHE .0 (e £.H(E 7.0 =

T—&

= A(z‘,t)u(ro,z',t)+ jK(r,t,g,h(g,r,t))u(ro,§,h(§,r,t))d§.

Thus, we were convinced that the vector function (3.18) satisfies the system (3.1). By virtue of (2.3)
and (3.16),at T =7 ® we have condition (3. 10). The uniqueness of the solution (3.18) follows from the
uniqueness of the definition of matrices W(T ' Tt ) and V(T ' Tt )

The theorem is completely proved.
Now, after establishing the structure of the general solution (3.18) of system (3.1), we have the
opportunity to research the multiperiodicity of its solutions.

Theorem 3.2. Let the conditions of theorem 3.1 are satisfied. In order fto the solution u(r 1 ) of
system (3.1) is ((9, a))—periodic, it is necessary, that its initial function u(O, t ) =7 (l ) at T =0 should
be @ -periodic continuously differentiable function of the variable t € R" :

u'(t +qo)=u'(t)e Cf/“’(R’”), qgeZ". (3.19)

Proof. Indeed, for 7 ‘=0 , from the formula for the general solution (3.18) of system (3.1) we have

ulz,1)=U(0,7,0)u’(h(0,7,1)). (3.20)
and it is (19, a)) -periodic by (T N ) Therefore, the condition is satisfied
ut+6,t+qo)=u(r,t), ge 7" (3.21)
Then, in particular, from the set (3.21) we obtain relation of
ult,t+qow)=ulr.t), ge 7", (3.22)
Substituting the representation (3.20) into the identity (3.22) we have

U0, 7,0+ g (h0, 7,1 + qw))=U(0, 7,0 u’ (K0, 7,1)).
— =
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Then, by virtue of properties (2.7) and (3.17), we obtain
U0, 7,0)u’ (10, 7,0)+ qo)=U(0, 7,0 )u’ (h0,7,1)), g Z".

Further, setting the £ = 0 and taking into account (3.16), we have
u'(t +qo)=u"(t), ge 2"

Thus, the identity (3.19) is proved. The smoothness of the initial functions u’ (l ) follows from the
smoothness of the solution % (T 1 ) of system (3.1) itself. This is what was required to prove.

Theorem 3.3. In order for the solution u(r,t) of system (3.1) for being @ -periodic by t € R"
under the conditions of theorem 3.2, it is necessary and sufficient for condition (3.19) be satisfied with
respect fo the initial function U ° (l ) for t=0.

Proof. < Necessity follows from theorem 3.2. To prove sufficiency, we show that relation (3.22)
follows from condition (3.19). To do this, it suffices to use representation (3.20) and properties (2.7) and
(3.17) of the characteristic and matricant, respectively. P

Theorem 3.4. In order for the solution u(r 1 ) to be O-periodic by T € R under the conditions of

theorem 3.3, it is necessary and sufficient that the initial function uo(l ) at T=0 be a @ -periodic
solution of the linear @ -periodic by 1 functional difference system

U0,0,0u’(t —c0)=u"(r) (3.23)
with difference p=c6 by t .
< The condition of @ -periodicity by 7 of the solution % (T 1 ) has the form

ult +0,t)=u(z,t), (r,6)e RxR" . (3.24)

By virtue of the uniqueness properties, the solutions of system (3.1) to satisfy condition (3.24) are
necessary and sufficient for condition

u(@,1)=u(0,1) (3.25)
to hold.
Then, using representation (3.20), we rewrite identity (3.25) in the form

U(0,8,1)u" (h(0,8,1))=U(0,0,1)u’ (h(0,0,1)).

Hence, by virtue of properties (2.6) and (3.16), we have the necessary and sufficient condition
(3.23).»

If u, (T J )= uo(h(O,T J )) is the ((9, a))-pen'odic zero of the operator ), then the solution
M(T, l) of the form (3.20):
u(z,1)=U(0,7,1)u,(z,1) (3.26)
we call the solution @ -periodic by [ generated by the (19, a))-periodic ZEr0 uO(T ,Z) of the
differentiation operator 1.
Theorem 3.5. In order for the solution u(r,t) fo be ((9, a))—periodic solution of system (3.1)

generated by the ((9, a))—periodic zero U, (T 1 ) of the operator D under the conditions of theorem 3.4,
it is necessary and sufficient that the vector function U, (T 1 ) = v(t ) be an eigenvector of the

monodromy matrix U (0, 0,1 ) =V(t):
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V(t)- Ep@)=0. (3.27)

<4 According to theorem 2.1, we have 0 (l — 049) =u’ (l ) Therefore, the necessary and sufficient
condition (3.23) given by theorem 3.4 has the form

[U(0,6,6)- EJu’(1)=0. (3.28)

Obviously, U O(f )= u, (O,t )= V(t ) Then from relation (3.28) we have the condition of (19, a))-

periodicity of solutions u(r b ) from the class under consideration generated by the multiperiodic zeros

of operator D, .»>
Note that if the commensurability condition (2.11) is not satisfied, then V(l ) becomes constant:

v=c" — const and the condition (3.27) of multiperiodicity has the form
V- Ec° =0, teR". (3.29)

In order to avoid nonzero (19, a)) -periodic solutions of system (3.1), in this case, it is sufficient to

require that condition
det[V(1)- E]#0, teR". (3.30)
be satisfied.

The research of multiperiodic solutions of the form (3.26) of system (3.1) is a separate interesting
direction in the theory of multiperiodic solutions of such systems, which is based on conditions (3.27) -
(3.30).

In many cases, there is necessary to clarify the conditions for the absence of multiperiodic solutions of
systems of the form (3.1) other than the trivial 22 = 0.

To do this, according to theorem 3.4, it is necessary to require that the @ -periodic functional-
difference system (3.23) does not have a solution nonzero that is @ -periodic by [ . In this regard, we

assume that the resolving operator {J (TO LTt ) of the system of integro-differential equations (3.1)
satisfies condition

|U(s, r,t)| <a e’“(H), T2>S (3.31)

with the constants & > 1 and & >0 .
Then the matrix {J (O, 7,1 ) at 7 =0 turmns into the identity matrix /' and at 7 > 0, according to

condition (3.31), decreases exponentially. Therefore, the monodromy matrix {/ (0,19,1 )= V(t ) at all
t € R" satisfies condition

|V(t)| <b=const<l, teR", (3.32)

where b=ae ™ =const <1,
Therefore, representing system (3.23) in the form

u® () =V (' (t - ch) (3.33)
and integrating it / times, we have
u' )=V (Wt —c6)..V(t— jedl’ (t — cO— jch).
Estimating the last relation, on the basis of (3.32) we have inequality

() < b u(t —c6— jeB), 0<b<1.
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Hence, passing to the limit at j —> +00, taking into account that the quantity |u° (t )‘ is bounded

due to its @ -periodicity, we have ‘uo (f X =0, that is, system (3.33) has only a zero @ -periodic solution.

Thus, the following theorem is proved.

Theorem 3.6. In order for the system of integro-differential equations (3.1) has no multiperiodic
solutions, except for the zero one under the conditions of theorem 3.4, the fulfillment of condition (3.31) is
sufficient.

Note that the proved theorem 3.6 remains valid if condition (3.31) is replaced by condition

|U(s, r,t) <ae”™, r<s (3.34)

with constants @ =1 and & > 0.
The more general than (3.31) and (3.34) the absence of condition a multiperiodic solution other than

zero is the decomposability condition for a resolving operator {J (S, 7,1 ) into the sum of two matrix
solutions U/ (S, T, l) and U | (S, T, l) of system (3.1) in the form

U(s,z,0)=U (s,7,0)+ U (s,7,1). (3.35)

DU, (s, 7, t) = A(z‘, t)U¢ (s, 7, t) + j K(z‘, t,¢&, h(§, Z t))U$ (s, £, h(§, 7, t))d§ , (3.36)
satisfying conditions o

|U7 (s, r,t)| <a e’“(”), T2>S, (3.37)
U (s,7,t)< ae“(H), T<s (3.38)
U (s, 7.1)

with some constants ¢ > 1 and o > 0.

In particular, when one of the matrices /'  and U . 1s equal to zero, then we obtain either condition
(3.31) or condition (3.34), respectively.

If conditions (3.35) - (3.38) are satisfied, they say that the resolving operator {J (S, T,t ) has the

property of exponential dichotomy.
We note that for system (3.1), the case of exponential dichotomy is possible when for the monodromy

matrix {/ there exist projectors P and P_ with the properties P+ P_ =/ is the identity operator,
PP =P P =0 is the zero operator and £ (Uu)z P.U-P.u, where P projects the space of
solutions onto the subspace of exponentially decreasing in norm of solutions, and £’ - on the subspace of

exponentially increasing solutions.

Then system

V(eW(t — c6)=(t) (3.39)

is equivalent to system

V(tw (t—cO)=v (1) (3.40 )
V() v, (t—cO)=v (1) (3.40 )

As above, it was justified that systems (3.40 ) and (3.40 | ) have only zero multiperiodic solutions;

therefore, system (3.39) also has only a zero solution, provided that conditions (3.35) - (3.38) are satisfied.
Thus, we can state a theorem that generalizes theorem 3.6 proved above.
Theorem 3.7. Let conditions (3.2), (3.3), and (3.35) - (3.38) be satisfied. Then system (3.1) has no
multiperiodic solutions, except for the trivial one.
4. Linear inhomogeneous equations and their multiperiodic solutions.
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We consider the linear inhomogeneous system of integro-differential equations
Dcu(r,t) (z' t)u T, t IK T, §,h(§, r,t))u(§,h(§,r,t))d§+ f(z',t), 4.1)

the corresponding system (3.1), where the (T 1 ) is given 71 -vector-function possessing property
f(r+6’,t+qa)):f(r,t)eC£i’e)(RxR’”),qu’”. 4.2)

Under the condition (4.2), we are posing the definition of a solution % = M(T 1 ) of system (4.1)
satisfying the initial condition

u|m0 =u'(t)e Cl(e)(R’”). 4.1%)

We begin the solution of this question about finding the particular solution 2~ (T 0 ,T,1 ) of system
(4.1) with zero initial condition

w'(r',zt) =0 4.1

=Ty

We will seck this solution in the form
u'(z°,7,0)= ]U (s, 7,0 (s, h(s, z,1))ds (4.3)

with an unknown, continuous, smooth by 7 at (T 1 ) € R x R™ n-vector-function
Wr,1)e Cii’e)(Rx R"). (4.4)
where U (S, T,t ) is resolving operator of the homogeneous system (3.1).

Acting by the operator 1) on the vector function (4.3), taking into account (4.4), we have

Du(z°,7,1)= chU(S, z,t)-v(s, h(s, 7,¢))ds +v(z,1) =

T

= Az, I)I Us,z,t (s, h(s,z,1))ds +

TO

+ IUK(” & h(E, TJ))U(S:ih(g&,r,t))dgfjv(&h(s, 7,0))ds +v(z,t)=
=A(T,t)u*(ro,r,t)+
* jK(Tsfsetsh(etﬂsf)){joU(S:fah(etsTJ))V(S,h(S,gf,h(g,r,t)))ds}dg+v(r,t):

T—€

TO

At (o rt)+ (Kot & hE ) (0 6 nE 2 +v(zr). @)

Substituting expressions (4.3) and (4.5) into system (4.1) we obtain that

v(z,1)= f(z.1). (4.6)
Then, by virtue of (4.6), we find the desired solution
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u*(ro,r,t): IU(S, 7,0)f (s, (s, 7,t))ds . A7)

Obviously, the solution (4.7) satisfies condition (4. 1*).
Since the solution u(r 0 ,T,1 ) of the linear inhomogeneous equation consists of the sum of the

solutions of the homogeneous equation and some particular solution of the inhomogeneous equation, we
have the expression for the general Cauchy solution

u(ro,r,t)z U(TO,T,Z)Ilo(h(TO,T,Z))+ u*(ro,r,t) (4.8)

system (4.1) with initial condition (4.1°%).
Thus, we have the theorem on solving the initial problem for a lincar inhomogeneous system of
integro-differential equations (4.1).

Theorem 4.1. Under conditions (3.2), (3.3) and (4.2), the initial problem (4.1) - (4.10) has the
unique solution in the form (4.7) - (4.8).
<« The existence of a solution # TO, 7,1 ) under the conditions of the theorem is proved by the

deductions of formulas (4.7) and (4.8). The uniqueness of the solution (4.8) follows from the uniqueness
of solution of the initial problem for the homogencous system (3.1).»

Now we will research the problems of multiperiodic solutions of system (4.1). Suppose that the
conditions of theorem 3.7 are satisfied.

Then the homogeneous system (3.1) corresponding to system (4.1) does not have (19, a))-pen'odic

non-zero solutions, and it has the property of exponential dichotomy.
In this case, the question of the existence of multiperiodic solutions of system (4.1) is investigated on
the basis of the Green's function method.

To construct the Green's function G(S, 7,1 ), using the property of exponential dichotomy, we set

G(s,7,t)= {

where U (S ,T,1 ) and U, (S, 7,1 ) are the terms of the resolving operator {J (S, Tt ), which consists

of their sum (3.35).
The constructed Green function (4.9) possess the following properties.

1 .DCG(S, T, t) = A(T,Z)G(S, z',t)+
+ jK(T:t:§=h(§=T:I))G(Safah(fmf))df,f *S. (4.10)

Uﬁ(s,r,t), T2,

~U (s,7.,t), 7<5s, £

This property follows from property (3.36) of the operator {/ (S, Tt )

2°. G(s—-0,7,1)-G(s +0,7,t)=E . (4.11)
Lets note that follows from the equality {J (T -0,7 ,t)+ U (T +0,7,1 )=
=U7(T,T,l)+U+(T,T,l)=U(T,T,Z)=E.

3. G(s+0,1+6,t+qw)=Gls,1,1), ge Z". 4.12)
This property is the consequence of property (3.17) of the resolving operator {J (S, T,t )
40.|G(s, z‘,t)‘ﬁae”'H', a>1and >0. (4.13)

We have this estimate from inequalities (3.37) - (3.38).
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Theorem 4.2. Suppose that the conditions of theorem 4.1 are satisfied and the matrix A(Z’ 1 ) with
kernel K (Z’ ,1,8,0 ) are such that the linear homogeneous system (3.1) has the property of exponential

dichotomy, expressed by the relation (3.35) - (3.38). Then system (4.1) has the unique ((9, a))—periodic
solution

u(.)= [Gls,7.0)f (s, h(s. 7.0)ds. @14)
satisfying estimate B

w|<= |

4

, 4.15

where Hu" = sup‘u(r,t)|.
RxR™

<« The convergence of the integral (4.14) and the differentiability of the solution (4.14) follow from
the differentiability of the matrix-vector functions (7, f and estimate (4.13). By virtue of (4.10) and

(4.11), it is proved that the vector-function (4.14) satisfies system (4.1). Multiperiodicity follows from
properties (4.12) and (4.2). Inequality (4.15) is the consequence of the estimate (4.13). The exponential

dichotomy of system (3.1) ensures the uniqueness of the (19, a)) -periodic solution of system (4.1). P
Lemma 4.1. Let the homogeneous linear system (3.1) under conditions (3.2), (3.3) and (4.2) have no

(19, C())—periodic solutions except zero. Then the corresponding inhomogeneous linear system (4.1) can
have at most one (19, C())—periodic solution.

<« Suppose that under the conditions of this lemma, system (4.1) has two different (19, a)) -periodic
solutions 2, (T, l) and u, (T, 1)72 u, (T, Z). Then their difference u(T, t)= u, (T, t)— u, (T, 1)72 0 is

a (19,60)-pen'odic solution of the linear homogeneous system (3.1), which has only a zero (19, a))-
periodic solution. The obtained contradiction proves the validity of the lemma. P

Assuming that the @ -periodic initial function u’ (t ) eC t(e) (Rm) of the (19, a))-periodic solution

u(r,t):
u(z,t)=U(0,7,0)u"(h(0,7,1))+u"(0,7,1). (4.16)
represented by (4.8) has property
u’(t—cO)=u"(r). (4.17)
it can also be represented by formula
u(z,)=u(z +6,6)=U(0,7+ 86,1 )u"(h0,7,1))+ u" (0,7 + ,1), (4.18)
since, by condition (4.17) uo(h(O, 7,1 )) is (19, a))-pen'odic zero operator [ _ .
Then, eliminating the unknown initial function # 0 (l ) from relations (4.16) and (4.18), we obtain
ulr,1)= [U’1 (0,7+06,1)-U"(0,7, t)]x
U707+ 0,0u" (0,7 +0,0)-U" (0,7, (0,7, 1)}, (4.19)

Further, using representation (4.7) of the solution #” (O,T,t ), accepting the notation

Uls,7,t)=U"(0,7,1)U(s, 7,1) and setting
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~ lj(s,r,t), T——0,
U,(s,7,t)=1 _ (4.20)
U(s,r+9,t), 0——>r71+86,
h 5
£, (s,7.h(s,7,t))= S s,ehls,7.0)) 7 0, (421)

fls,z+0.h(s,7+60,t)) 0——>7+0,

we can represent relation (4.19) in the form
T+0
u(z,t)=U"(0,7+6,0)-U"(0,7,1)]" [U,(s,7.0)f, (s, h(s,z,0))ds. @22)

Thus, looking for a (19, a))-pen'odic solution of system (4.1) among solutions u(r 1 ) with initial

conditions having property (4.17), we showed that it is determined by formula (4.22), which is revealed by
relations (4.7) and (4.19) - (4.21).
Theorem 4.3. Suppose that conditions (3.2), (3.3), (4.2) are satisfied and the linear homogeneous

system (3.1) has no ((9,(())—peri0dic solutions, except for the ftrivial one. Then the system of
inhomogeneous linear integro-differential equations (4.1) has the unique ((9, a))—periodic solution
M(T, l) of the form (4.22).

<« The conclusion of the solution (4.22) is given above. Therefore, the existence of the (19, a))-

periodic solution of system (4.1) is proved. Uniqueness follows from Lemma 4.1. »
Note that the above researched problems for the considered systems can be considered along the

characteristics  =1° +¢7 — ¢7" with fixed initial data (T 0 1 i )
Then, due to the fact that the operator [J, turns into the operator d / d7 of the full derivative, from

the theorems proved as a corollary we have the corresponding statements about the existence of solutions
to the initial problems for systems of ordinary integro-differential equations and the theorem about the
existence of their Bohr quasiperiodic solutions generated by multiperiodic solutions of the original
systems which we will not dwell on here.

Conclusion.

First of all, we’ve noted that this article proposes the method for (research) researching solutions of
problems that satisfy the initial conditions and have the property of multiperiodicity with given periods for

linear systems of integro-differential equations with [ partial differential operator, £ -hereditary effect

and the linear integral operator. This technique is a generalization of methods and solutions of similar
problems for systems of partial differential equations with the operator ). The solution of problems

under consideration for such systems in this formulation are researched for the first time. The relevance of
the main problem is substantiated. The solutions of all the subtasks analyzed to achieve the goal are
formulated as theorems with proofs. Scientific novelties include the multi-periodicity theorems of zeros of

the operator 1) ; about solutions to initial problems for all considered types of systems; about necessary

as well as sufficient conditions for the existence of multiperiodic solutions of both homogeneous and
inhomogeneous systems, as well as the integral representations of solutions inhomogeneous systems in
two cases when the corresponding homogeneous systems have the properties: 1) exponential dichotomy
and 2) the absence of non-trivial multiperiodic solutions, at all.

We’ve also noted that the consequences deduced by examining the results obtained along the
characteristics [ =1" +cT—c7’ with fixed (T O,I 0) refer to their applications in the theory of
quasiperiodic solutions of systems ordinary integro-differential equations.

The technique that developed here is quite applicable to the research of problems of hereditary-string

vibrations and the “predator-prey” given in the delivered part of the work, which can be attributed to
examples of the applied aspect.
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K.Ky0aHoB ateiHIarsl AKTe0C OHIPIIK MCMIICKSTTIK YHHBCPCHTETI, AKTo0e, Kazakcran

D, -OTIEPATOPJIBI )KOHE & -3PEIUTAPJIBIK NEPUOATHI CHI3BIKTHI MHTETPAJIIbI-
JTA®OEPEHIIAAJIBIK TEH/EYJIEP )KYHECIHIH KONMEPHOATHI INEIIM/IEPT

Annoramms. Makamama D, = 8/dt + ¢, 3/dt, +... +¢, 8/, omeparopmsi, ¢ =(c,,...,c,, )~ const IKoHE
TYKBIM KyaJayIObUIBIK CHIATTAFbl KYOBLIBICTAPJb CHIIATTAHTBIH & aKBIPJIBI IPEIAHTAPIBIK TEPHOATHI CHI3BIKTHI
uHTETpanabl-TH((PepeHINANIBIK TCHACYICP MXYHECIHIH KOINEPHOATHl INEIIMICPl >KOHIHACTI €cemTep MEH
GacTankbl €CECM MOCENeNepi 3epTTeneai. [, ONepaTOPBIHBIH HOJICPIHIH TEHACYIMEH KaTap ChI3BIKTHI OIPTEKTI sKOHE
OiprekTi emec HHTErpanbl-Iu(pdepeHIMANIBIK TEHACYICP JKYHECi KapacTHIPBUIABL, OJAp YIIH OacTamksl
eCenTepaiH OipMOHII MMCIIiTIMILUTITIHIH KCTKITIKTI MAPTTAPHl AHBIKTAIFAH, (7 f) OOWBIHINAG (6, ®) TMCPHOITHL,
KOMNICPHOATH IMCIIIMACPAIH Oap OONMYBIHBIH KKCTTI A¢, JKCTKLMIKTI A¢ MApPTTAPHl anbIHFAH. CBI3BIKTHI OipTCKTi
eMec KYHEHIH KONIEpHOATH MEIIMICPIHIH HHTETpaNablk epHekTepl 1) aepOec skarmaiaa, SIKH TCHICYTE COMKEC
OipTeKTi JKYHenep 3KCIMOHCHITHANIB TUXOTOMIITBIK KACHCTKC HC OOJFAHAA MKOHC 2) KAl KAFAAWa, OipTeKTi
JKYHCTICPAIH HOIICH 0acKa KOMICPHOATH MEIiMACPi 00IMaraHma aifKbIHIATIBL.

Tyiiin ce3aep: uHTErpanabl-TU(PPEPSHIMATIBIK TEHACY, SPEAUTAPIBIK, (IYKTYaLHs, KOIIICPHOATHI IETIiM.
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YK 517.946
MPHTH 27.33.19
K.A. CapraGanos, I'.M. AiitenoBa

AXTIOOMHCKHI peTHOHANBHBIN rOCyAapcTBEeHHBIH yHUBEpcuTeT mMeHn K. )Ky6arnoBa, Akrobe, Kazaxcran

MHOTIONIEPHOJAUWYECKHUE PEINEHUSA TAHEMHBIX CUCTEM
UHTETPO-IU®PEPEHIIAAIBHBIX YPABHEHUI C Dc -OIEPATOPOM
" & -TIEPHOAOM SPEJJUTAPHOCTH

AnHoTtamusi. B 3amerke wmccrenyroTcs BONPOCHI HAYANBHOM 33Ja¥M M 33Ja4W O MHOTOIICPHOJMYHOCTH
pemCHUIT ~ JHHEHHBIX  CHCTEM  HHTETpo-TuepeHnmanpHBIX  ypaBHCHHH  C OIEpaTOpOM  BHIA
D, =08l0t+c dfot, +...+¢,0fdt,. c=(c,....c,)—const N KOHEYHBIM NIEPHOSOM IPETUTAPHOCTH & = const >0,

KOTOpbIC OMHUCHIBAKOT SBJICHUS HACJICACTBEHHOIO Xapakrtepa. Hapsay ¢ ypaBHeHHEM HylIed omepartopa D,
PacCMOTpPEHbI IHHEHHBIC CHCTEMBI OJHOPOIAHBIX W HEOJHOPOIHBIX HHTETPO-TU((epeHInaNbHBIX YPABHCHUH, 1T
HHUX YCTAHOBJICHBI JOCTATOYHBIC YCJIOBHA OI[HOSHa‘{HOfI PaspCiiMOCTH  HAYAJBHBIX 3a4a', IOJYy4YCHBI KaK
HCOOXOJHMBIC, TAK U JAOCTATOYHBIC YCIOBHA CYIICCTBOBAHHMA MHOTOTICPHOAWYCCKHX MO (7, 1) ¢ mepuogamu (6, @)
pemcHuH, OMpeaeICHB HHTCTPATBHBIC MPSICTABICHAS MHOTONCPHOIMUYCCKHX PCIICHHN THHCHHBIX HCOTHOPO HBIX
cucteM 1) B YaCTHOM CIy4ae, KOTJAa COOTBETCTBYIOLIME OJHOPOIHBIC CHCTEMBI OOJNAJAIOT 3KCHOHCHIMATIHHOH
JUXOTOMHYHOCTBIO H 2) B 00IIEM CIIy4ae, KOT/Aa OJHOPOIHBIC CHCTEMBI HC HMCIOT MHOTOTICPHOIHYCCKAX PCIICHHI,
KpOME TPUBHAIBHOTO.

KmoueBsie  cioBa: HHTErpo-Tu(PEepeHINAIBHOE  YpPaBHCHUE, 3PEIUTAPHOCTS, (daayxryanus,
MHOTOTICPHOJIMICCKOE PELICHHC.
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