DETERMINATION OF VANADIUM IN THE PRECASPIAN REGION’S OIL BY THE EPR-SPECTROSCOPY METHOD

Abstract. In the article of 1977, it is considered the preparation of anisotropic EPR spectrum of a vanadyl ion complex consisting of 8 lines of hyperfine structure, as a result of a decrease in the viscosity of Karazhanbas oil. In recent years, lectures on EPR spectroscopy have been given in the subjects of petroleum chemistry and petroleum geology for students of higher educational institutions. The practical side of this lecture should begin with a simple isotropic vanadium spectrum. A method is proposed for determining vanadium and FR in crude oils at a temperature of liquid nitrogen. An important scientific and practical result of the proposed new method for the determination of vanadium in crude oils, in contrast to the method of American authors, is a reduction in nitrogen consumption, and an additional advantage of the method consists in reducing the cost of the process, since the use of an expensive temperature attachment is excluded. The EPR method is also proposed to estimate the total amount of vanadium in oil zones based on the interaction of V₂O₅ with concentrated hydrochloric acid. The standard photolorimetric method for the determination of vanadium in oil ash can be replaced by a more rapid and selective EPR technique.

Keywords: organic free radicals, vanadyl ion VO²⁺, electron paramagnetic resonance, isotropic vanadium spectrum, anisotropic vanadium spectrum.

The first report on the paramagnetism of crude oils was made by N.S. Garif’yanov and B.M. Kozyrev in 1956 [1] who, while studying the oil of the Bavl field in the EPR spectrum, found a single absorption line with a g-factor equal to 2 (Fig. 1). H.K. Gutovsky and co-workers [2] found that most crude oils produce an EPR spectrum, this spectrum consisting of a single line with a g-factor of 2.009, a width of about 4.5 Oe, and hyperfine structure lines.

Figure 1-Electronic paramagnetic resonance in oil samples of the Bavl field (Tutarria).
A single line is due to the free radical (R⁻) of the asphaltene structure [2]
The latter was attributed to a paramagnetic vanadyl ion, and the singlet was due to free carbon bonds in condensed aromatic structures in colloidal particles of asphaltenes (Fig. 2).

A large number of lines indicates the anisotropic nature of the hyperfine interaction of an unpaired electron with the nuclear magnetic moment of the vanadium (spin of the nucleus - $I_v = \frac{7}{2}$). The anisotropy of hyperfine interaction is caused by the high viscosity of the oil.

R. Nasirov and S.P. Solodovnikov [3,4] found that dissolution of oil in toluene (1:3.55) and heating to 120 °C in a vacuum sealed ampoule result in the complex anisotropic spectrum transforming into a simple isotropic spectrum consisting of 8 hyperfine structure lines (HFS) due to the interaction of an unpaired electron with the nuclear magnetic moment of the vanadium (nuclear spin - $I_v = \frac{7}{2}$), as is seen in Fig. 3. The narrow ($\Delta H = 7\pm0.5$ G) intense line at the center of the spectrum belongs to the so-called "free radical" (R*).

![Figure 2: EPR spectrum of the Karazhanbas oil (well No. 851) at room temperature: the hyperfine lines $I_{1\parallel}$-$8_{1\parallel}$ and $1_{1\parallel}$-$8_{1\parallel}$ belong to the oxo-vanadyl VO$^2^+$ cations, and the single line in the high field refers to the free radical](image2)

![Figure 3: Isotropic EPR spectrum of vanadyl complexes (VO$^2^+$) of mixtures of the Karazhanbas oil with toluene (1:3.55) at +120 °C](image3)

EPR spectra were recorded on the E-12 spectrometer of the "Varian" company at a frequency of 9000 MHz with a magnetic field strength of 3000 Oe. As a standard, the Urikhtau oil of the Emba region with a vanadium content of 28 g/t was used. For measurements, a double resonator was used, which makes it possible to monitor the recordings of each spectrum with the help of the "Strong pick" reference sample.
included in the instrument. The amount of vanadium in the investigated oil samples was determined directly from the EPR spectra with the hyperfine structure of the complexes of tetravalent vanadium (see Fig. 4). The lines of HFS $I_{||} - 8I$ and $I_{\perp} - 8I$ belong to the oxo-vanadyl VO$^{5+}$ cations. Of the two intense central lines, the line in the low field refers to the highest peak of $4_{||}$ HFS VO$^{5+}$, and a single line in the high field - to the "coal" free radical. To determine the V$^{4+}$ content, the amplitude of the most intense line of the spectrum, which is adjacent to a single line of the free radical in the region of a weaker magnetic field, was measured.

The V$^{4+}$ content was determined by comparing the spectral amplitudes of the investigated sample I_{V} and the standard I_{s}, by the formula: $C_{V} = \frac{I_{V}I_{s,ref}}{I_{s,ref}I_{s}}$, where $I_{s,ref}$ - the amplitude of the reference sample line when recording the standard spectrum; I_{s} - the amplitude of the same line when recording the spectrum of the sample. It was assumed that the widths of the spectral lines of the sample and the standard are the same.

On the recommendation of the American authors [5], the EPR spectra of V$^{4+}$ are measured at a temperature of -90°C, at which the oil hardens, and the amplitude of the measured signal does not depend on the viscosity of the oil. Thermostating of the sample was carried out by blowing it with nitrogen gas, heated to a given temperature.

Of particular interest was the effect on the accuracy of the determination of vanadium in oils extracted from different wells, the use of liquid nitrogen temperature (-196°C), which greatly expands the possibilities of laboratory determination of vanadium and increases the efficiency of the method.

Before using liquid nitrogen as a coolant in the determination of vanadium, it was necessary to investigate the nature of the saturation curves of EPR signals V$^{4+}$ depending on the power P of ultra-high frequency, since such a dependence exists.

Figure 5 shows the saturation curves of the V$^{4+}$ EPR signal as a function of the square root of the UHF power taken in a special double resonator at various temperatures.

In the first case, a quartz Dewar vessel (Figure 6) containing an ampoule with oil in liquid nitrogen was located in one resonator, in the second resonator, there was the standard "Strong pitch" of the E-12 spectrometer of the Varian company, used to monitor the UHF power.

In the second case, in the determination of vanadium at -90°C, a quartz vacuum-treated tube with the oil sample was used in one resonator through which nitrogen vapors of the corresponding temperature were blown, in the second resonator, there was a standard.

Since, in the absence of saturation, the intensity of the EPR signal is $I \approx \sqrt{P}$, the intensity of the standard was a relative measure used as the scale of abscissas in Fig. 5.
Figure 5 - Dependence of intensity change I EPR V^{4+} of oil of the South-East Kamyshtovoye field on \sqrt{P}.

Well 1: 1 - at -196 °C, 3 - at -90 °C; well 16: 2 - at -196 °C, 4 - at -90 °C.

Figure 6 - System for measuring EPR spectra of oils at liquid nitrogen temperature:
1 - Dewar vessel; 2 - ampoule with oil; 3 - liquid nitrogen.

Table 1 - Results of the V^{4+} determination in the region of linear dependence of I on \sqrt{P} on the South-East Kamyshtovoye deposit.

<table>
<thead>
<tr>
<th>N of well</th>
<th>V^{4+}, g/l</th>
<th>-90°C</th>
<th>-196°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>68.6</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.3</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16.8</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15.5</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>36.7</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>71.0</td>
<td>68.3</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>24.6</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11.2</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>71.1</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>34.3</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>14.5</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>10.9</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>10.2</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>11.6</td>
<td>10.6</td>
<td></td>
</tr>
</tbody>
</table>

As can be seen from Figure 5, there is a significant region of linear dependence of I on \sqrt{P}, in which a correct determination of the V^{4+} vanadium content is possible at both -90 °C and -196 °C. Regardless of the concentration of vanadium (see wells 1 and 16 in Table 1), the regions of linear dependence for the
same temperature are approximately the same, but differ significantly at different temperatures: at -196 °C, the linear section is about 3 times shorter than at -90 °C.

Table 1 presents a good correspondence of the data, which makes it possible to recommend the use of liquid nitrogen as a coolant in mass laboratory determinations of vanadium.

In order to improve the standard photocolorimetric method for determination of vanadium in oil ash, a more rapid method was proposed for estimating the total amount of vanadium in oil ash, based on the interaction of V₂O₅ with concentrated hydrochloric acid according to the following scheme:

\[V_2O_5 + 6HCl \leftrightarrow 2VOCl_2 + Cl_2 + 3H_2O \, . \]

Figure 7 shows the anisotropic EPR spectrum of vanadium chloride formed from reactive vanadium oxide. The same spectrum was obtained from the ash of Kalamkas oil, well N 52 (Fig. 7) and other oils. The concentration of vanadium in the studied oil ash (Table 2) of the Caspian region is determined from the anisotropic EPR spectrum of the formed vanadium chloride by the methods of [6-8]. As can be seen from Table 2, the results of determining the content of vanadium in oil ash by the chemical method and EPR and XRF methods are consistent. The advantage of the EPR method for determining the total vanadium from oil ash is its productivity, selectivity, high accuracy and reliability in comparison with conventionally used photocolorimetric methods.

Table 2: Vanadium content in oils and their ash, %

<table>
<thead>
<tr>
<th>Oil</th>
<th>Ash output</th>
<th>Vanadium content</th>
<th>Vanadium content per ash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no РФА</td>
<td>no РФП</td>
</tr>
<tr>
<td>Kalamkas, 52</td>
<td>0.087</td>
<td>0.015</td>
<td>0.0148</td>
</tr>
<tr>
<td>Botakhan, 68</td>
<td>0.037</td>
<td>0.0025</td>
<td>0.0022</td>
</tr>
<tr>
<td>Karazhanbas, 851</td>
<td>0.09</td>
<td>0.029</td>
<td>0.026</td>
</tr>
</tbody>
</table>

The results of these studies on the determination of vanadium in crude oils using EPR-radiospectroscopy were used by geologists and scientists of the All-Russian Petroleum Research Exploration Institute (VNIGRI) as reference samples for calculating the geological reserves of vanadium in the Karazhanbas, North Buzachinsky, Kalamkas and Zhalgiztobe oil fields of the Mangyshlak region (Act on the Use of Materials by R. Nasirov in the works on calculating the reserves of vanadium in the oil deposits of the Mangyshlak region, 24.03.1992, №08-signed by the head of the department of the VNIGRI, doctor of geological and mineralogical sciences, laureate of the State award, V.V. Gribkov) [9].

![Figure 7- EPR spectra of vanadyl chloride at -196 °C, obtained: a) from V₂O₅, b) from the ash of Kalamkas oil, well N 52 (here are recorded the hyperfine lines 1₁ - 8₁ of vanadyl ion)](image-url)
The developed method "The results of determination of tetravalent vanadium in oils by the EPR spectroscopy" is also recommended for students of higher education institutions studying in the specialties "Geology and geochemistry of oil and gas" [10] and "Oil and gas chemistry" [11]. In these textbooks, EPR spectroscopy is widely used not only in petrochemistry, but also in other geological and geochemical studies, in particular, in the allocation of oil strata on the relationship between the concentration of ions of divalent manganese, vanadium V²⁺ and FR in rocks.

The presence of porphyrins with vanadium in the form of vanadyl ion VO²⁺ is evidence in favor of the theory of the organic origin of oil (chemofoessilia). pigments with a porphyrin structure (plant chlorophyll, animal hemoglobin) are considered as biological precursors of oil porphyrins widely distributed in nature [12]. Allocated from vanadylporphyrin concentrates of Karazhanbas oil, free porphyrins were used by us to obtain complex copper compounds [13]. In order to establish the structure of the oil porphyrins in the EPR spectrum, hyperfine splitting from the interaction of an unpaired electron with copper nuclei and four atoms of ¹⁴N pyrolic rings was observed.

Conclusions.
1. It was found that dissolution of oil in toluene (1:3.55) and heating to 120 °C in a vacuum-sealed ampoule result in the complex anisotropic spectrum transforming into a simple isotropic spectrum consisting of 8 hyperfine structure lines (HFS), caused by the interaction of the unpaired electron with the nuclear magnetic moment of the vanadium (the nuclear spin I₁=7/2).
2. For the first time a new method for determination of vanadium and FR in crude oils at liquid nitrogen temperature is proposed. An important scientific and practical result of the new proposed method for the determination of vanadium in crude oils, in contrast to the method of American authors, is a reduction in nitrogen consumption, and an additional advantage of the method is to reduce the cost of the process, since the use of an expensive temperature attachment is excluded.
3. The advantage of the EPR method for determining the total vanadium in oil ash is its productivity, selectivity, high accuracy in comparison with traditionally used photocolorimetric methods.
4. The developed method "The results of determination of tetravalent vanadium in oils by the EPR spectroscopy" is also recommended for students of higher educational institutions studying in the specialization of "Geology and geochemistry of oil and gas" and "Oil and gas chemistry".

REFERENCES

Р.Н. Насиров

X. Досмухамедов атындағы Атырау мемлекеттік университеті, Атырау к., Қазақстан

ЭПР СПЕКТРОСКОПИЯ КОМЕГІМЕН КАСПИЙ МАЦЫНДАГЫ МУНЯЛЛАРДАҒЫ ВАНАНДЫҚ АНЫҚТАУ

Аннотация. Макалада 1977 жылы мұнайдың тұтқырылығын азайту негізінде тәртіп прецизионлық ионды қоқысдалған 8-желіден тұратын тәжірибе/білік ізотропты ЭПР-спектрі алынған сөз бөлік. Сонғы жылдары мұнай химиясы және геологиясы пәндері бойынша студенттерге ЭПР – спектроскопиядан дәрістер оқыға бастады, ал дәрістің практикалық негізі осы жай ізотропты спектрдің бастау алынуы керек. Ванандық және еркін радиалды мұнаіларда сұйық азот температура арқылы анықтау әдісі ұсынылады. Зертхана жағдайында банандағы жаңа анықтау кезінде ұсынылған әдістің арнайы және өз бөлігін тәжірибейтін әдістердін және кәсірі өзіндік және өзіндік өзгертіліп, құрылғандық жұмыс ізотропты спектрді анықтау.

Түйін сәбіре: қоқысдалған 8-желіден тұратын тәжірибе/білік ізотропты спектрді көрсету.

УДК 546.881:553:982:538.113

Р.Н. Насиров

Атырауский государственный университет им.Х. Досмухамедова

ОПРЕДЕЛЕНИЕ ВАНАДИЯ В НЕФТЯХ ПРИКАСПИЙСКОГО РЕГИОНА МЕТОДОМ ЭПР-СПЕКТРОСКОПИИ

Аннотация. В статье 1977 года рассматривается получение изотропного спектра ЭПР комплексного иона ванадия, состоящего из 8 линий сверхтонкой структуры, в результате уменьшения вязкости Караканбасской нефти. В последние годы по предметам: химии нефти и геологии нефти для студентов высших учебных заведений читается лекция по ЭПР – спектроскопии. Практическая сторона этой лекции должна начинаться с простого изотропного спектра ванадия. В работе предлагается способ определения ванадия в СР в сырой нефти при температуре жидкого азота. Важным научно-практическим результатом предлагаемого нового способа определения ванадия в сырой нефти, в отличие от метода американских авторов является снижение расхода азота, а дополнительное преимущество способа заключается в удушении процесса, так как исключается применение дорогой температурной приставки при массовых лабораторных определениях ванадия. Так же предлагается метод ЭПР для оценки общего количества ванадия в золях нефти, основанный на присутствии V₂O₅ концентрированной соляной кислотой. Стандартный фотоколориметрический метод определения ванадия в золях нефти можно заменить более экспрессивной и избирательной методикой ЭПР.

Ключевые слова: органические свободные радикалы, ион ванадия VO²⁺, электронный парамагнитный резонанс, изотропный спектр ванадия, анизотропный спектр ванадия.

Information about authors:
Nasirov R.N. - Attyrau State University named after Kh.Dosmukhamedov, nasirov.48@mail.ru.