METHANE CONVERSION OVER Mo/Al₂O₃—CATALYSTS MODIFIED WITH ADDITIVES OF ZEOLITE AND PHOSPHOROUS

Abstract. Mo-containing catalysts supported on a matrix consisting of alumina modified with additives of both zeolite — HZSM and phosphorus were synthesized. The molybdenum content was varied within a range of 1-5 mass %. The physicochemical properties of the catalysts were studied by BET, XRD, electron microscopy, and microdiffraction analysis. The catalytic properties of the synthesized catalysts were tested in the processes of dry and combined steam-dry conversion of methane. It was shown that the synthesized catalysts are the nanosystems with particle sizes are 3-50 nm depending on the amount of molybdenum and the processing methods of the catalysts. The activity of the catalysts grows with increasing of both molybdenum content and temperature. The main product of methane conversion is synthesis gas. The H₂/CO ratio increases at adding steam to an initial feed. In dry reforming of methane the reaction products also contain C₂, C₃ hydrocarbons and alcohols.

Key words: Dry and Combined Dry-Steam Conversion of Methane, Syngas, Molybdenum, Zeolite, Phosphorus.

1. INTRODUCTION

In recent years, the processing of gaseous hydrocarbons into value-added products has attracted attention. Conversion of methane, the primary constituent of natural gas, associated petroleum gas, biogas is considered to be the promising one. Biogas is considered as a renewable source of energy [1].

One of the ways of conversion methane-containing feedstock to chemicals is production of synthesis gas [2]. There are three reforming reactions that allow converting methane into syngas with different H₂/CO ratio: partial oxidation, steam reforming, and dry reforming [3]. The last one has gained a lot of attention due to possibility to reduce the emissions of two main greenhouse gases like carbon dioxide and methane [4]. The ratio of H₂/CO produced in the dry reforming of methane is ~ 1 which preferable as a feed for production long chain hydrocarbons and oxygenates [5, 6].

The main challenge is that the reaction is highly endothermic and high temperatures are required to reach considerable extent of conversion as well as surpass side reactions [7, 8]. Lack of stable catalysts against quick deactivation because of coking and active sites sintering is another disadvantage [2,9]. To reduce the undesirable carbon deposition process, it is necessary to create an active catalyst and technology capable of involving the surface C_ads formed as a result of the destructive decomposition of methane into interaction with CO₂ (Eq.1). Surface adsorbed carbon is the product of the complete dehydrogenation of a methane molecule during its carbon dioxide conversion at the metal-containing active center of the catalyst.

\[\text{CO}_2 + \text{C}_{\text{ads}} \rightarrow 2\text{CO} \] \quad \text{(Eq.1)}

Therefore more efforts are being expended in the development of new catalysts that will represent activity, resistance to coking, as well as, long-term stability. Non-noble metals like Ni, Co, Fe and noble metals including Pt, Rh, Ir, Pd and etc. have been studied as a catalyst in the dry reforming of methane [10-13]. Non-noble-based catalysts are preferable over noble metals because of the availability and low cost. Noble metals are usually applied as a promoter in polymetallic catalysts due to their high activity and greater resistance to coke formation compared to non-noble metals [14]. It allows overcoming the
deactivation of non-noble catalysts caused by excessive coke deposition, while simultaneously reducing total cost. Other benefits of this approach are it increases the dispersion of the metal, decreases the size of the metal particle and thus retain a good catalytic activity and stability.

Supported transition metals (or their carbides) are another type of catalysts that have attracted attention due to their comparable activity and stability to noble metals [8,15-16]. The performance of a catalyst does not depend not only on active metal and promoter, but also on the support. Main role of supports is in provision of certain textural and physicochemical properties [17]. These properties give possibility to a catalyst to stay well-dispersed and resistant to carbon deposition. Single-metal support such as γ-alumina performs very well in the reforming of methane, but it is apparent that mixed and/or structured supports have properties that make them attractive to use in methane reforming [11]. Zeolites with a high Si/Al ratio are considered to give better conversions, which are more basic. Their good performance is due to the confinement of active metal particles inside their pores, providing a higher resistance to sintering, as well as their basic character that decreases carbon deposition [18].

In this work, the new Mo-containing catalysts supported on alumina modified with additives of zeolite (HZSM-5) and phosphorus were synthesized and tested in dry and combined steam-dry reforming of methane.

2. EXPERIMENTAL

Catalysts were prepared by mixing Al(OH)₃ with HZSM-5 zeolite followed by drying and forming of the granules and their calcination. The ratio Al₂O₃:HZSM = 7:3. The prepared by such a way matrix was impregnated by molybdenum salt and phosphoric acid. The molybdenum content varied from 1 to 5 mas.% by weight of the catalyst, the phosphorus content – 1.0 mas. %.

The model feed corresponding to biogas composed of CH₄ – 53.5 vol.%, CO₂ – 46.5 vol. % was used for dry reforming of methane (DRM). For combined steam-dry conversion of methane or so-called bireforming of methane (BRM). 20 vol.% of steam was added to an initial feed. The ratio (vol.) of the components in the feedstock was: CH₄:CO₂:H₂O = 1.15:1:0.2. The process was carried out in a laboratory flow quarts reactor operated under atmospheric pressure at varying temperature within 500-1000°C and the gas hourly space velocity (GHSV) was varied from 500 to 1000 h⁻¹.

The physicochemical properties of the catalysts were studied by XRD, BET, TEM, and microdiffraction analysis.

The initial and final reaction products were analyzed by on-line GC. The conversion degrees of carbon dioxide (X₂CO₂) and the methane (X₂CH₄) were calculated according to formulas (1, 2) respectively. Thus, the activity of catalysts was compared.

\[
X_{CO₂} = \frac{[CO₂]_{in} - [CO₂]_{out}}{100\%} \quad (1)
\]

\[
X_{CH₄} = \frac{[CH₄]_{in} - [CH₄]_{out}}{100\%} \quad (2)
\]

where \([CH₄]_{in}\) and \([CO₂]_{in}\) – mole fraction of CH₄ and CO₂ in inlet stream, \([CH₄]_{out}\) and \([CO₂]_{out}\) – mole fraction of CH₄ and CO₂ in outlet stream.

Conversion of water was not calculated.

Yields of reaction products: hydrogen, carbon oxide and hydrocarbons (Y_H², Y_CO and Y_Cn respectively) expressed as its amount (μmol) formed by gram of the catalyst per second (μmol/(g·s)).

3. RESULTS AND DISCUSSION

3.1 Catalyst characterization

The specific surface area (BET) and pore volume of both fresh and spent samples of the Mo catalysts in the dry conversion of methane were determined. The fresh catalyst samples with varied Mo content have the same characteristics. The difference was observed between the fresh and spent samples of 2% Mo/Al₂O₃-HZSM-P, which was long-term tested (for 30 hours) in BRM. Specific surface area was decreased from 307.1 to 201.7 m²/g, while pore volume was not significantly changed: 296.8 and 290.8 ml/g for fresh and spent samples respectively (Table 1).
Table 1 – The specific surface of 2%Mo/Al₂O₃-HZSM-P catalysts (BET)

<table>
<thead>
<tr>
<th></th>
<th>S, m²/g</th>
<th>V, ml/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh</td>
<td>307.1</td>
<td>290.8</td>
</tr>
<tr>
<td>spent (30 h)</td>
<td>201.7</td>
<td>296.8</td>
</tr>
</tbody>
</table>

The XRD method did not show the presence of any structures except alumina in the catalysts due to possibly high dispersed state of the catalysts and therefore they are X-ray amorphous. Other reason may be a low metal content, the determination of which is outside the sensitivity range of the equipment.

Studies of the 2%Mo/Al₂O₃-HZSM-P catalyst (fresh) by TEM showed an accumulation of dense particles of a prismatic shape and translucent laminated particles with sizes of 30-70 nm (Fig. 1). The microdiffraction pattern is represented by a small number of rings composed of reflections assigned to a mixture of phases: Mo₂Si (JCPDS, 4-814) and AlMo₃ (JCPDS 11-18).

![TEM image of the fresh sample 2%Mo/Al₂O₃-HZSM-1%P catalyst](image)

Also, the particles with a size of 30-50 nm were observed. Their microdiffraction pattern can be attributed to Mo₂Si (JCPDS, 4-814). The small particles with a size of 8-10 nm give the microdiffraction pattern, which corresponds to SiP structure (JCPDS, 27-608). The presence of Mo₂Si and SiP structures in the catalyst indicates the entry of Mo and phosphorus into the zeolite framework.

A large aggregate composed of translucent lamellar particles of predominantly 10-30 nm correspond to AlPO₄ (JCPDS, 31-28). At low magnification, the translucent lamellar particles were detected. The microdiffraction pattern is represented by reflections located in rings and separate reflexes and can be assigned to a mixture of phases: AlPO₄ in the modification (JCPDS, 20-45) and MoOPO₄ (JCPDS, 18-942). The presence of two modifications of AlPO₄ may be explained by the interaction of phosphorus with aluminum in zeolite framework and aluminum in Al₂O₃.

3.2 Dry reforming of methane on Mo/HZSM-P-Al₂O₃ catalyst

The effect of temperature on the performance of the 1%Mo/HZSM-P-Al₂O₃ catalyst in dry reforming of methane (DRM) has been studied under conditions: CH₄/CO₂=1.15, P=0.1MPa, GHSV=1000 h⁻¹ and varying temperature within 775-1000°C. The degrees of methane and carbon dioxide conversion grow from 1.7 to 31.1 and 21.3 to 65.2% respectively with an increase in temperature from 775 to 1000°C.

In the entire temperature range studied, the main product of DRM over the 1%Mo/HZSM-P-Al₂O₃ catalyst is synthesis gas. Traces of C₂, C₆ hydrocarbons and traces of oxygenates are also formed. Increasing temperature leads to growing the hydrogen content in the synthesis gas formed. Thus, an increase in temperature from 775 to 1000°C causes an increase in the H₂/CO ratio from 0.5 to 1.1. At high temperatures of 900-1000°C traces of oxygenates (C₁-C₂ alcohols) are formed. In the temperature range of
800-900°C, traces of C₂ and C₆ hydrocarbons are detected. At 1000°C, ethylene is formed in an amount of 0.2% (Table 2). The formation of these products occurs due to the interaction of alkyl and methylene surface-adsorbed fragments of incomplete methane destruction. The ability of Mo/HZSM catalysts to convert methane to benzene is well-known [19].

<table>
<thead>
<tr>
<th>t°C</th>
<th>Conversion, %</th>
<th>H₂/CO</th>
<th>Yield of products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X₇₇₄₈</td>
<td>X₇₇₈₄</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>8.2</td>
<td>21.5</td>
<td>0.5</td>
</tr>
<tr>
<td>900</td>
<td>19.6</td>
<td>42.1</td>
<td>0.8</td>
</tr>
<tr>
<td>1000</td>
<td>31.1</td>
<td>65.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

It is known that in the process of methane dehydrocyclization over the Mo/HZSM catalyst along with the formation of benzene, significant carbonization of the catalytic surface occurs. Microdiffraction and TEM data on Mo/HZSM-P-Al₂O₃ studied confirm the formation of a nanosystem containing various surface structures due to interaction molybdenum with zeolite and alumina to form Mo-Si and Al₂Mo₃. Modification of the Mo/HZSM-P-Al₂O₃ catalyst with phosphorus leads to formation of MoOPO₄ structure. Phosphorus also can be included into the zeolite framework as SiP and AlPO₄. Interaction between phosphorus and alumina with formation of AlPO₄ was previously shown [20]. The multicomponent chemical composition of the catalytic surface due to modification by phosphorus leads to the suppression of the formation of benzene and C₆ hydrocarbons. The formation of synthesis gas becomes the main direction of carbon dioxide conversion of methane over the Mo-P-HZSM composed catalyst.

The catalytic processing of methane and other hydrocarbons is accompanied by the appearance of carbon deposits on the active catalyst sites. The effect of C₆ on the catalyst activity will depend on the nature of metal. Mo is able to form carbides with C₆.

With an increase in the temperature of DRM from 800°C to 1000°C the reaction products mainly contain synthesis gas, the H₂/CO ratio increases from 0.5 to 1.2, which is associated with prevailing destructive decomposition of methane on Mo containing centers. In this case, the C₆ formed can interact with CO₂, but at a low concentration of CO₂ the C₆ can be introduced into the molybdenum structure with the formation of carbide – Mo₆C.

Comparative analysis of data [19,21-22] and results of this study allows to conclude that the formation and destruction of molybdenum carbide depend on the carbon dioxide content in the reaction zone. At a low concentration of CO₂ in the feedstock C₆ can interact with molybdenum to form carbides at high temperatures. At high CO₂ concentrations in the feed, carbide is destructed as a result of the reaction (Eq.2) [21-22]. Molybdenum carbide is an active catalyst for dry reforming of methane.

\[
\text{Mo}_2\text{C} + \text{CO}_2 \rightarrow 2\text{CO} + \text{MoO}_2 \quad \text{(Eq.2)}
\]

3.3 Bireforming of methane on Mo/HZSM-P-Al₂O₃ catalysts

To enrich the synthesis gas with hydrogen, the steam additives (20 vol.%) were introduced into the feed CH₄/CO₂. The combined dry-steam reforming of methane or bireforming of methane (BRM) was carried out over the 1%Mo/HZSM-P-Al₂O₃ catalyst under P=0.1MPa, GHSV=1000h⁻¹, CH₄:CO₂:H₂O=1.15:1.0:0.2 and varying temperature within a range of 500-1000°C.

At a temperature of 1000°C, the degree of conversion of methane and carbon dioxide reaches 43.7 and 78.2% respectively (Fig.2). Conversion of carbon dioxide is higher because its content in initial feed is less. The main product of BRM is synthesis gas. H₂/CO ratio is increased from 0.6 to 1.2 at growing temperature from 800 to 1000°C. The addition of steam into the reaction mixture inhibits the formation of hydrocarbons. C₂ and C₆ hydrocarbons and oxygenates presented in small amounts at relatively low temperature – 780°C and completely disappeared at higher temperatures (Table 3).
The analysis of Tables 2 and 3 shows that the participation of steam in methane conversion leads to increase in conversion both of methane and carbon dioxide as well as to enrich synthesis gas with hydrogen. Consumption of carbon dioxide is higher than methane i.e. CO₂ may actively react with C_ads with formation of CO at the Mo-containing centers.

Mainly, the optimal amount of the active component of the catalyst is experimentally determined. In this work, the Mo content ranged from 1 to 5 mas. % weight. Figure 3 shows the effect of temperature on the conversion of CH₄ and CO₂ in BRM over the 2%Mo/HZSM-P-Al₂O₃ catalyst. The high activity of the catalyst in BRM is observed at a temperature region of 800-1000°C: methane conversion was 72.4 and carbon dioxide – 86% at 960°C. The main reaction product over the 2%Mo/HZSM-P-Al₂O₃ catalyst is synthesis gas, the H₂/CO ratio is 1.3.

Table 3 – Effect of temperature on the products composition in BRM over the 1%Mo/HZSM-P-Al₂O₃ catalyst at CH₄:CO₂:H₂O=1.15:1:0.2, P=0.1 MPa, GHSV=1000h⁻¹

<table>
<thead>
<tr>
<th>t, °C</th>
<th>Conversion, %</th>
<th>H₂CO</th>
<th>Product yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X(CH₄)</td>
<td>X(CO₂)</td>
<td></td>
</tr>
<tr>
<td>780</td>
<td>9.1</td>
<td>29.0</td>
<td>0.6</td>
</tr>
<tr>
<td>800</td>
<td>9.8</td>
<td>32.3</td>
<td>0.6</td>
</tr>
<tr>
<td>900</td>
<td>20.9</td>
<td>48.0</td>
<td>0.8</td>
</tr>
<tr>
<td>1000</td>
<td>47.3</td>
<td>78.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Figure 3 – The effect of temperature on BRM over the 2% Mo/HZSM-P-Al₂O₃ catalyst at CH₄:CO₂:H₂O=1.15:1:0.2, P=0.1 MPa, GHSV=1000h⁻¹
At using higher content of Mo – 5 mas.% under the same conditions \(\text{CH}_2\text{CO}_2\text{H}_2\text{O}=1.15:1.0:2, \ P=0.1 \ \text{MPa}, \ \text{GHSV}=1000h^{-1} \) an increase in activity of the 5%Mo/HZSM-P-Al₂O₃ catalyst was observed in BRM. Methane conversion became higher than carbon dioxide (Fig. 4): \(X_{\text{CH}_4}=82.0\% \), while \(X_{\text{CO}_2}=65.8\% \) at 960°C.

![Graph showing conversion percentages for CH₄ and CO₂](image)

Figure 4 – The effect of temperature on BRM over the 5% Mo/HZSM-P-Al₂O₃ catalyst at \(\text{CH}_2\text{CO}_2\text{H}_2\text{O}=1.15:1.0:2, \ P=0.1 \ \text{MPa}, \ \text{GHSV}=1000h^{-1} \)

Thus, systematic studies of Mo/HZSM-P-Al₂O₃ catalysts with varying molybdenum contents from 1.0 to 5 wt.% allowed us to conclude that the activity is directly dependent on the amount of molybdenum, which is the active phase of the system (Table 4).

<table>
<thead>
<tr>
<th>Mo content, mas.%</th>
<th>Conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X_{\text{CH}_4})</td>
</tr>
<tr>
<td>1</td>
<td>47.3</td>
</tr>
<tr>
<td>2</td>
<td>72.4</td>
</tr>
<tr>
<td>5</td>
<td>82.0</td>
</tr>
</tbody>
</table>

Table 4 – Comparative characteristics of Mo/HZSM-P-Al₂O₃ catalysts in BRM at \(\text{CH}_2\text{CO}_2\text{H}_2\text{O}=1.15:1.0:2, \ P=0.1 \ \text{MPa}, t=960°C, \ \text{GHSV}=1000h^{-1} \)

The physicochemical properties of the 2%Mo/HZSM-P-Al₂O₃ catalyst were studied after its long-term operation (30 hours) in BRM by electron microscopy and microdiffraction analysis. In addition to the structures observed in the fresh sample the new species with a size of 10-40 nm (Fig. 5), which can be attributed to a mixture of phases: \(\text{MoO}_2 \) (JCPDS, 32-671), \(\eta\text{-MoC} \) (JCPDS, 8-384), \(\alpha\text{-MoC} \) (JCPDS, 35-787), \(\text{P} \) (JCPDS, 18-964), \(\text{SiC} \) (JCPDS, 29-1127), \(\text{Al}_2\text{Mo}_3\text{C} \) (JCPDS 6-7) were detected by microdiffraction analysis.

![TEM image of 2%Mo/HZSM-P-Al₂O₃ catalyst](image)

Figure 5 - TEM image of 2%Mo/HZSM-P-Al₂O₃ spent in BRM for 30 hours
It is more important the appearance of molybdenum carbides: MoC and Mo$_2$C. Molybdenum carbides are formed at temperatures above 600-650°C. Under the conditions of BRM molybdenum carbides may be formed due to interaction between atomic carbons formed as a result of methane destruction with Mo which is an active center of the catalyst.

It was shown in [22,23] that molybdenum catalysts coated with Mo carbides exhibit high activity in the carbon dioxide conversion of methane. Molybdenum carbides are highly active in methane conversion that was confirmed in this work by the long-term test of 2%Mo/HZSM-P-Al$_2$O$_3$ in BRM. But over time, the degree of methane conversion decreases as a result of the interaction of carbides with carbon dioxide to form carbon monoxide and non-active molybdenum oxides (Eq. 2).

The stability of the 2%Mo/HZSM-P-Al$_2$O$_3$ catalyst was tested for long continuous operation (30 hours). The results prove that Mo-containing catalysts are sufficiently thermally stable; no destruction of their structure and particle agglomeration was observed by TEM. Measurement of the surface area of 2%Mo/HZSM-P-Al$_2$O$_3$ catalyst by the BET method showed that some changes occur in the spent sample – $S=201.7m^2/g$ compared to the initial one – $S=307m^2/g$. Elucidation and elimination of the reasons leading to a decrease in the specific surface area of the catalyst after long-term operation will allow the development of methods to increase stability and activity of the Mo/HZSM-P-Al$_2$O$_3$ catalyst.

CONCLUSIONS

Phosphorus modified molybdenum catalysts can be of practical interest in the production of chemical and petrochemical products from any methane-containing feedstock including renewable biogas. The Mo/HZSM-P-Al$_2$O$_3$ catalysts developed perform the activity and selectivity in syngas production by dry and bireforming of methane. Preliminary stability test demonstrates their stable activity and selectivity for 30 hours of exploitation. Under certain conditions hydrocarbons and alcohols are formed over the catalysts. That allows considering the Mo/HZSM-P-Al$_2$O$_3$ as promising base for manufacturing a cheap stable catalyst for syngas production from methane or biogas by further appropriate modification of the catalyst developed.

Acknowledgement: This research was supported by the Ministry of Education and Science of the Republic of Kazakhstan, the Program # BR05236739 MES RK.

Е.Е. Нурмаканов1, Г.Д. Засумбаева1, Ш.С. Иткулова1, Л.В. Комашко1

1АК «Д.В. Сокольский атындагы жанармай, катализ және электролитика институция», Алматы, Казахстан

ФОСФОР ЖӘНЕ ЦЕОЛИТ КОСПАСЫМЕН МОДИФИЦИРЕЛІНГЕН Mo/Al$_2$O$_3$-КАТАЛИЗАТОРЛАРДАГЫ МЕТАННЫҢ ТУРЛЕНУІ

Аннотация. Цеолит (HZSM) және фосфордың қоспаларымен модификацияланған алюминий төтіменін тұратын матрицаға кондырылған Mo-құрамдас катализаторлар синтезделген болады. Молибден молшері 1-5 мас.% шамасы қаралғанда тербіледі. Катализаторлардың физика-химиялық касиеттері БЭТ, РФА, электронды микроскоп және микродифракциялық анализ әдістерімен зерттелді. Синтезделген катализаторлардың катализдік касиеттері метаннан коміркышқылық және булуы коміркышқылық құрылғығының түрлі бөліктерінің түрлі газ атындасуынан тұратын. Катализаторлардың демек катализаторлардағы молибдененің молшерінен әсер етеді және катализаторлардың өндіру қасиетін байланысты бөліктерге 3-50 нм-ді құрайтын наножүгірек жататының қорсетеді. Катализаторлар белсенділігі өз болып молшері мен температураның үлгісінен бейіне орналасады. Метан өндірісінің өзінің синтез-газ болып табылады. H$_2$/CO қатынасы бағыттау үшін коспаларға сүйілді. Қандай-ақ, мөлшерлерін сандық ріфмологиялық кезінде реакция оңыздырылып, С$_2$, С$_6$ коміркышқылықтарына ғана спирттердін ағзатын молшері көрсетеді.

Түшініліс. Метаның Коміркышқылығы және булуы коміркышқылығы құрылғысы (Конверсия), Синтез-газ, Молибден, Цеолит, Фосфор.
УДК 544.478; 542.97; 665.612.3; 546.264-31
МРНТІ 31.15.28

Е.Е. Нурмақанов1, Г.Д. Жаксыбаева1, І.С. Иткулова1, Л.В. Комашко1

1 АО «Інститут теплової, катализи і электрохимии им. Д.В. Сокольского», Алматы, Казахстан

Конверсия метана на Mo/Al2O3— Катализаторах.
Модифіцованних Добавках Фосфора і Цеолита

Аннотация. Были синтезированы Мо-содержащие катализаторы, нанесенные на матрицу, состоящую из оксида алюминия, модифицированного добавками цеолита — HZSM и фосфора. Содержание молибдена варьировалось в пределах 1-5 мас.%. Физико-химические свойства катализаторов изучались методами БЭТ, РФА, электронной микроскопии и микрофотографического анализа. Катализитические свойства синтезированных катализаторов тестировались в процессах углекислотной и пароуглекислотной конверсии метана. Было показано, что синтезированные катализаторы относятся к наносистемам, размеры частиц которых составляют 3-50 нм в зависимости от количества молибдена и методов обработки катализаторов. Активность катализаторов возрастает с увеличением содержания молибдена и температуры. Основным продуктом конверсии метана является синтез-газ. Соотношение H2/CO возрастает при добавлении паров воды в исходную смесь. При сухом рифформинге метана в продуктах реакции также содержатся в небольших количествах углеводороды C2, C3 и спирты.

Ключевые слова: Углекислотная и Пароуглекислотная Конверсия Метана, Синтез-Газ, Молибден, Цеолит, Фосфор.

Information about the authors: Nurmakhanov Y.Y. – D.V. Sokolsky Institute of Fuel, Electrochemistry and Catalysis, Almaty, Kazakhstan, yevzhan.nurmakhanov@gmail.com, https://orcid.org/0000-0002-0404-1833
Zakumbeeva G.D. – D.V. Sokolsky Institute of Fuel, Electrochemistry and Catalysis, Almaty, Kazakhstan, Academician of NAS RK, Retired, g.d.zakumbeeva@gmail.com, https://orcid.org/0000-0001-5536-2664
Itkulova S.S. – D.V. Sokolsky Institute of Fuel, Electrochemistry and Catalysis, Almaty, Kazakhstan, s.itkulova@rifee.kz, https://orcid.org/0000-0001-7159-5249
Komasko L.V. – D.V. Sokolsky Institute of Fuel, Electrochemistry and Catalysis, Almaty, Kazakhstan, komasko535@mail.ru, https://orcid.org/0000-0003-0031-2816

REFERENCES

