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Abstract. Probabilistic extreme value theory is an interesting and fascinating theory with a great variety of

observations. Generalized Extreme Value (GEV)distribution is frequently applied to forecast natural events such as 
floods, air pollution, extreme sea levels, hydrology, meteorology, climatology, insurance, finance, geology and 
seismology. In this study general information about Maximum Likelihood Estimation and Bayesian Inference were 
investigated using the parameter estimation methods. The application of the study was completed using earthquake 
data from Van provincial center in Turkey from 1995 to 2017. This data used the Maximum Likelihood Estimation 
and Bayesian Estimation methods in an attempt to predict the severity of earthquakes expected to occur in the future.
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Introduction. This theory is applied to model the maximum or minimum distribution o f a series of 
observations. Extreme value theory deals with probabilistic and statistical problems involving the 
maximum or minimum values o f random variables. The theoryattemptsto answer questions about extreme 
distribution; for example, the possibility o f the occurrence o f a windspeed in a given place during a certain 
year or the possibility of a river exceeding a certain height, etc [1]. The distinguishing property of extreme 
value analysis is measurement o f the stochastic behavior o f a process at unlikely large or small levels. 
Especially, it attempts to estimate the probability o f things that exceed the monitored values [2]. This 
distribution was developed as the largest o f a set o f values. It is first thought to have been applied to the 
estimation o f flood levels and it was also applied to the estimation o f the magnitude o f earthquakes [3]. In 
addition, the distribution is applied in forecasting natural events such as floods, earthquakes, volcanic 
eruptions [4] global warming problems, offshore modeling, rainfall modeling, and wind speed modeling
[5]; in engineering such as breaking strength o f materials [6]; and in insurance and finance [7].

[8] and [9] мstate that the three types of extreme value distributions can be combined to form a 
formula like 1.1 for a single parametric family (GEV)with parameters ц, о, and £,.

The GEV family o f distributions can be classified as Gumbel (type I), Frechet (type II) and reverse- 
Weibull (type III) [10]. Gumbeldistribution is a special case within the GEV distributions (Fisher-Tippett 
distributions).In addition, the Gumbel distribution is also a member o f the Gompertz-Verhulst (GV) 
family o f distributions [11,12]. Although thesethree types o f EV distributions are used for sample maxima, 
reverse-Gumbel, reverse-Frechet, and Weibull distributions are used for modeling sample minima. 
Gumbel distribution is a transitional form between the Frechet and the inverse-Weibull distributions. The 
GEV distribution is anirregular one which means that the distribution depends on the parameters [13].

applications. In probability theory and statistics, this distribution is used to model extreme (maximum or minimum)

l
(1.1)
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The GEV distribution has three parameters;—oo <  ^  <  +  oo andc >  0 are location andscale 
parameters, while is a shape parameter .The value determines the type o f GEV
distribution. corresponds to Frechet distribution with , corresponds to Weibull
distribution with a  =  — 1 /  %, andif — 0 corresponds to Gumbel distribution [1,2,9,14].

Provided that for i=1,2,....n

z = 1 + & ) f >0
the probability density function (pdf) is given by

(1.2 )
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To model extremes in observational data, the ranges o f observations o f n length must form a block. 
Most o f the time, these blocks are chosen as annual time periods. An attempt is made to predict the 
expected maximum numbers occurring after к years taking z p (recurrence period) with the aid o f equation 
(1.4) with p =  1 /  к and p e  [ 0, 1 ] [1,2,15].

Zp
H - j [ l - { - l o g ( l - p ) }  *] , f g £=0

>f  = 0ц  — o lo g { —l o g ( l  — p)}
(1.4)

Earthquakes occurred with magnitude 7.0 in Van-Erci§ county in September 1941, with magnitude
7.3 in Van-Muradiye county in November 1976 and with magnitude 7.2 in Van-Erci§ county in October 
2011 [16].These earthquakes occurred nearly every 30-35 years, and it is thought that generalized extreme 
value distribution may provide an answer to the question of what is the highest magnitude earthquake that 
will occur in Van province in future years.

Estimating the location and time of earthquakes with maximum magnitude is a topic that makes 
assessment o f seismic risk parameters difficult. The extreme value statistics developed by Gumbel provide 
an appropriate method to estimate the frequency and recurrence intervals o f naturally occurring events [17].

Generally, for earthquake prediction methods the equation developed by
Gutenberg-Richter in 1956 is used. This equation estimates using the total number o f earthquakes 
occurring within one year. However, in this study instead o f using Gutenberg-Richter’s recommended 
equation, an attempt is made to predict the expected earthquake magnitude for future years by taking the 
highest earthquake magnitudes (xM) occurring in Van province in Turkey during 23 years. This is similar 
to studies by [2] about “annual maximum sea levels”, [18] about national data buoy center (NDBC) using 
21-year wave height (Hs), De Paola et al [19] about precipitation data from Dar Esamam and Addis 
Ababa, and Gilleland et al. [15] about excessive ozone amounts observed in 184 days from 72 stations in 
North Carolina.

Param eter estimation. GEV distribution is as follows: the random variable x b i =  1, . . . ,n ,  
The GEV distribution, with and parameters, is denoted as in equation 1.1. 

A wide variety o f parameter estimation techniques are available but, in this section, we chose to use MLE 
and Bayesian inference for estimation o f GEV parameters.

A variety o f techniques including graphical procedures, moment and probability-based estimators are 
recommended to predict extreme value models [20]. Each technique has its own positive and negative 
aspects. In this study, we chose to use MLE and Bayesian techniques.

1. M a xim u m  L ikelihood  Estim ation (M LE). MLE is a method that determines values for the 
parameters o f a model. This method attempts to find the parameters reaching the highest levels o f a 
probability function and is among the commonly used approaches. ML estimators are more effective when 
asymptotic. In some cases, MLE may remain irresolute (i.e., small sample estimators); in these cases, 
numerical methods like ML Newton-Raphson may be applied.

95



Bulletin the National academy o f  sciences o f  the Republic o f  Kazakhstan

There are many reasons for using MLE for extreme value models. It is easy to numerically assess log- 
probability functions. Asymptotic theory ensures mere approaches for standard deviation and confidence 
intervals. Additionally, likelihood may be generalized to more complicated model structures [20].

Suppose xi ,x 2 ■ ■ .,x„are i.i.d. observations with joint probability density function
is called the likelihood function, where is a

vector o f unknown parameters. It is often more useful to work with the logarithm of the likelihood 
function, called the log-likelihood function:

L( в ) =  Ln ( /  (x x ,X2 ■ ■ . ,x n | 0) )  =  2 P= iL n  (f(x; | 0 ) ) .

The ML procedure can be used to estimate the GEV parameter 0 withthe likelihood function;

L { n , o , 0  = —  ПГ (2 .1)

when z (1.2) is violated, the likelihood is zero and the log-likelihood equals oo. GEV log-likelihood 
function can be written as

Ln(L) =  -n lo g a  -  ( |  +  l )  SP=1 log ( l  +  f  ( ^ ) )  -  EjLi ( l  +  ? ( “ ))" (2 .2 )

Then, by definition, MLE estimator for the unknown parameter , is obtained by
bringing the first derivative to zero according to the L nL parameter. As used by Hosking et al. [21] 
andMartins and Stedinger [22] and Raynal-Villasenor [23] the MLE estimations for GEV are as follows:

в  =  a r g m a x L  ( 6 ,X ) 06©

If we place this in Equation 1.2;

dLnL

д и  О  L — i
i =1

- i
1 +  -  z. ■/f

=  0

dLnL _ 1 

da a

dLnL 1
—  =  “ ? 2 <=i

- n + Z '
i =1

- 1 /

( ^ )
=  о

f ( ? ) =  о (2.3)

Maximizing Eq. (2.3) according to the parameter в  leads to the maximum likelihood estimate for the 
GEV distribution.Though this matrix can be analytically calculated, it is easier to use numerical 
differentiation techniques to complete secondary derivatives and inversion to assess standard numerical 
routines [2]. The Newton-Raphson algorithm is a powerful technique for solving equations numerically. It 
solves the likelihood equations d L /  д в by iteration. For detailed information see [21,24,25].

Taking as the initial estimation value for the parameter vector, a Taylor series up to second order 
opens and if  it corresponds to 0 , the root o f в is obtained.

, - i
(2.4)
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If  the matrix of the second-degree partial derivative o f the function is taken as the Hessian
matrix and if  the vector o f the first-degree partial derivative of the functionis taken as the
gradient vector, the estimation value for the parameter vector o f the iteration o f this root (2.4) is
obtained as [26].

в т+1 =  в т  -  [Я  ( в т ) ] -  XVL (в  m) (2.5)

As the MLE method has asymptotic properties, it is a frequently chosen statistical method. MLE can 
handle cases like missing data, non-stationarity, temporal dependence and covariate effects. MLE may 
show better performance compared to other methods for small samples; however, the general problem 
with MLE is its lack o f robustness [25].

2. Bayesian In ference. The aim of Bayesian approaches is to determine how the previously obtained 
data, used as prior knowledge, and the obtained posterior knowledge update the available information 
[27,28]. In the complex models o f Bayesian techniques based on Bayes theorem, if  0 is a high-dimensional 
vector o f parameters, calculating the share o f (Equation 2.6) may cause a problem even if complicated 
numerical integrations are used. Simulation-based techniques developed due to these difficulties such as 
Markov chain Monte Carlo (MCMC) have helped the use ofBayes techniques to become more widespread 
[2]. The advantage o f MCMC is that it does not require asymptotic normality in samples and as a result 
provides reliable results for small samples [28]. MCMC includes all simulation techniques ensuring 
parameter estimations by pulling the sample to the simulation path from conditional distributions instead 
of by using complicated integration techniques. Basically, MCMC uses Markov chain and Monte Carlo 
iterations [29,30].

Bayes’ theorem states that,

f  ( в  | x )  =  П в  ) Л * 1 в ) a  f  ( в  ) .L  ( в  ;x )  (2 .6)
J0 / ( 0)./(x |0)d0

This distribution (2.6) does not entail a closed form, because o f this, it cannot be used in the rest of 
the inference.

The joint prior density function can be written as f  (p, o  , f )  = f  (p) f  (o )  f  ( f  ) [2].In situations where 
there is no information about these three parameters, the noninformative prior of improper prior 
f  (p, o, f )  о  1 /  o  may be used, as recommended in the study by Stephenson [31]. When using the MCMC 
method, the GEV scale parameter is commonly reorganized and

p  = I о g  ois employed to preserve the positivity o f this parameter [2,32]. In this study, f  (p, o, f )  о  1 
was accepted.

In this situation, using likelihood function in Eq. (2.1), the joint posterior distribution o f the 
parameters can be obtained as follows;

oc /(p,<T,<0L(p,<T,<f|x)

i n k ' 1
fin.o.Z, |x) oc —  z ч 'expИ , , p , a  >  0

Similarly, when ц, fandxare given, the conditional posterior distribution o f с  with given ц andx is;

/(< j |p , x ) oc ^  [(1  -  z )  (?+1) -  exp[1 -  z] ? 
i =1

>  0

the conditional posterior distribution o f ^ iv e n  с , f  and xis obtained as below;

n
_  ^ - ( ? +1) _/0 |< 7 ,< f,x )  OC — z ) — exp[ 1 — z] ?

i =1

, p, , a  >  0
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Similarly, the conditional posterior distribution o f (fwith given ц ,с and x is;

II

f ( £ \ H , o , x )  ос V  [ ( 1 - z )  fe+1) -  e x p [ l  - z ]
i= 1

For the remainder o f the analysis, MCMC is used to obtain a random sample from this distribution. 
The aim of the MCMC simulation method is to create a random walk in parameter space
and converge to the final targeted distribution. The Markov chain is a stochastic process and

value is linked to the previous value in the chain ; however, it forms a
stochastic process independent o f the others and produces data. If  this chain works long enough, it reaches 
the final distribution o f interest [27].

Coles [2 ] collected reasons why Bayesian analysis needs to be used for extreme value data under two 
headings. The first is that due to the low number o f data it allows the possibility of including other data 
sources via previous distributions. Secondly the posterior distribution provides better outcomes than ML 
analysis. However, Coles and Powell [33] emphasized that in cases where prior information is large, 
inquiries should be made about whether extreme behavior is formulated or not. They mention that when 
the Bayesian approach to inference is used there may be a contradiction. There are opposing opinions 
about determining prior knowledge. Especially when personal views about prior knowledge are 
considered, [34] and others Savage, 1972; Barnet, 1973; Wright and Ayton,1994are encountered [27]. 
However, during the continuation o f studies by Coles and Powell [33] they state the benefits o f using 
spatial prior knowledge in studies with very few data, that the inclusion o f a previous distribution form in 
spatial knowledge stabilizes estimations without causing prejudice and are more variable than ML 
estimators. Ashour and El-Adl [35] used simple numerical techniques to obtain a range o f simulated data. 
Studies comparing the Bayes estimator with the ML estimators emphasized that the Bayes estimator was 
more productive than the ML estimators. Kumar et al. [11] applied the quasi Newton-Raphson algorithm 
ML estimates and Bayesian estimations with the MCMC simulation method, respectively, and found 
uniform priors and gamma priors results were very close to each other in ML and Bayes estimation results 
for Gumbel. The study stated that the MCMC method was a substitute method for parameter estimations 
in the Gumbel model and was more responsive compared to the MLE method. Martins and Stedinger [22] 
used Monte Carlo simulations in studies and compared the GML, ML, MOM and LM quartile estimators 
for a GEV distribution. They determined that in small samples, MLE may cause unreasonable and low 
performance results for GEV distributions while these types o f problems were resolved by using Bayesian 
prior distributions. The study by Gholami [18] concluded that Bayes results were better than ML. Studies 
De Paola et al. by [19] considered MLE and Bayes methods and stated that the ц parameter estimated with 
the Bayesian method was more sensitive. Coles et al. [36] stated that Bayes analysis did not provide a 
completely different interpretation o f data; however, it presented a more appropriate and direct route to 
managing and expressing uncertainties.

The prior and posterior distributions used in the simulation section of this study are listed as follows, 
respectively.

Prior1:
Priors: л  ~N  ( л 0 , a  0) , a  ~  Ga ( а 0 Д 0) , £, ~  G а ( а г Д г )
Posterior:

Г П
exp

■ n  - i n

^  - 0 ) ~  -  О  -  Mo) 2 -  Ъоa -  . ^ ( z ) ' f e +1) . [cr“0-n-1] . [§“1_1]

Prior 2:
Priors: л  ~  G E V (л  0 , a  0 ,^ 0) , a  ~  G a ( а  0 Д 0) , £, ~  G a ( а  г Д -^
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exp

Posterior:

П

-  1 -  X0a - ■I (z) U+1J | l  ■< ^ r )

Prior 3:
Priors: л  ~  G (л0<с0) , c  ~  G a  ( a 0 Д 0) , £, ~  G a  (%  Д -l) 
Posterior:

exp

■ П
- I  H - H o  (  I I - I I 0 , . . s 

exp I ------------I — A,0<7 — Â c,
Co

. £ ( z )  ^ +1) . [ff“o - n - l ]  .

Simulation studies. With the aim of comparing the performance of ML and Bayesian methods, ц, с  
and ^for the GEV (10, 1, 1) were produced from datasets containing 10, 30, 50 and 100 numbers 
respectively. Openbugsand extremespackage in the R program was used for comparisons.

The bias informs how close the expected value of the estimator is to the actual value of the parameter, but 
not how far from the actual value. MSE is used to assess how close an estimator is to the actual value [37].

There were four applications of ML, Prior 1(ц Normal, c,<z, gamma), Prior 2(ц Gumbel, c,<z, gamma) 
and Prior 3 (^GEV, c,<z, gamma) and 100 simulation studies were performed for each dataset. In order, 

, , and priors were taken for
location, while for scale and shape and priors were used.
The bias and MSE results for the simulations are given in table and figure.

Bias and MSE results

Bias MSE

n ML Prior1 Prior2 Prior3 ML Prior1 Prior2 Prior3

Lo
ca

tio
n

10 0.5691 0.4899 0.4873 0.4827 0.3729 0.2692 0.2679 0.2522

30 0.5015 0.4588 0.4507 0.4557 0.2722 0.2299 0.2229 0.2216

50 0.4730 0.4476 0.4545 0.4477 0.2319 0.2074 0.2122 0.2056

100 0.4786 0.4643 0.4627 0.4519 0.2339 0.2214 0.2199 0.2076

Sc
ale

10 0.5671 0.4139 0.4149 0.4163 0.3580 0.2122 0.2153 0.2036

30 0.5197 0.4415 0.4356 0.4378 0.2830 0.2102 0.2049 0.2031

50 0.5016 0.4557 0.4599 0.4539 0.2596 0.2159 0.2196 0.2132

100 0.4903 0.4669 0.4668 0.4569 0.2439 0.2227 0.2223 0.2115

Sh
ap

e

10 0.3206 0.4668 0.4678 0.4565 0.4708 0.2613 0.2645 0.2594

30 0.5134 0.5567 0.5521 0.5565 0.3293 0.3432 0.3392 0.3382

50 0.5154 0.5905 0.5889 0.5914 0.2885 0.3705 0.3675 0.3713

100 0.5849 0.5980 0.6042 0.6109 0.3536 0.3684 0.3776 0.3813

When the simulation results are investigated, for the n=10 dataset, ML was seen to have high bias and 
MSE values (apart from bias results belonging to shape). The MLE simulation results belonging to shape 
were between -0.4 and 1.9. This causes the bias results for ML to fall. Again, in the same way the MSE 
values belonging to shape had higher bias values for Prior1, Prior2 and Prior3 compared to ML causing 
the MSE values to be larger than ML.
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Simulation results

With both methods (ML and Bayesian), they appeared to provide better results as sample numbers 
increased. As can be seen from studies with different priors, as the sample number increased Bayesian 
results became more consistent and additionally provided better results than ML in situations with n=10 
(table, figure).

Conclusion. Currently it is still unknown when and with what severity earthquakes will occur at a 
certain point. When the historical process is examined, a large earthquake occurs in Van province nearly 
every 30-35 years. In this study, it was seen that earthquake data was appropriately modeled by GEV 
distribution. GEV used in situations showing extreme behavior with the ML and Bayesian approaches 
were used and the obtained results were compared. An attempt was made to predict earthquakes that will 
occur in future years. Simulation studies show that as the number o f data increase, the ML and Bayesian 
results show similarities. Bayesian analysis outputs provided more complete inference than MLE. The 
simulation results applied to different datasets show us that the Bayesian approach is reliable, in addition 
to being an alternative statistical analysis. Simulation studies show that as the number of data increase the

10 0
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Bayesian method provides better results than ML. In this study, four different applications were 
completed.

As stated by Coles and Tawn [39], it is necessary to take care with selection o f prior information in 
the structure o f asymptotic models for extreme values. Distributions from similar distribution families 
ensure we obtain close and consistent results. In simulation studies, Prior2 and Prior3 come from the same 
distribution family. When the obtained results are investigated, it appears we obtained similar results from 
them.

When earthquake data is investigated, the four simulation results are close to each other. For 
Bayesian approaches, the lowest DIC value belongs to Prior3. The results confirm there will be a large Mx 
earthquake again within the next 30 years.

As stated in the conclusion o f the study by Pisarenko et al. [40], extreme value theory provides a 
good statistical approach to calculate the magnitudes that will occur in future time intervals. However, 
whether this is accurate or not should always be carefully researched.
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РАСПРЕДЕЛЕНИЕ ОЭЗ И ОЦЕНКА ПАРАМЕТРОВ 
ДЛЯ ДАННЫХ О ЗЕМЛЕТРЯСЕНИИ В ВАНЕ

Аннотация. Вероятностная теория экстремальных значений -  это интересная и увлекательная теория с 
большим разнообразием применений. В теории вероятностей и статистике это распределение используется 
для моделирования экстремальных (максимальных или минимальных) наблюдений. Распределение 
обобщенных экстремальных значений (ОЭЗ) часто применяется для прогнозирования природных явлений, 
таких как наводнения, загрязнение воздуха, экстремальные уровни моря, гидрология, метеорология, 
климатология, страхование, финансы, геология и сейсмология. В этом исследовании общая информация об 
оценке максимального правдоподобия и байесовском выводе была исследована с использованием методов 
оценки параметров. Применение исследования было завершено с использованием данных о землетрясениях 
из провинциального центра Ван в Турции с 1995 по 2017 год. В этих данных использовались методы оценки 
максимального правдоподобия и байесовской оценки в попытке предсказать силу землетрясений, которые 
могут произойти в будущем.
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