REPORTS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
ISSN 2224-5227
Volume 6, Number 334 (2020), 49 – 55

https://doi.org/10.32014/2020.2518-1483.135

УДК 663.12
МРНТИ 34.27.21

A.A. Saprakeeva¹, A.S. Latif⁴, Z.R. Ahmedova²

¹M.Auezov South-Kazakhstan State University, Shymkent, Kazakhstan;
²Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan.
E-mail: almira.saprakeeva@mail.ru, latif-azia@mail.ru, zahro.ahmedova@mail.ru

SELECTION OF ACTIVE YEAST STRAINS FOR FERMENTED BEVERAGES FROM PLANT MATERIALS

Abstract. Fresh juices obtained under sterile conditions, including pomegranate juice, cherries, cherries, red grapes, watermelon juice, beetroot juice, sugar cargo, as well as flushes from the surface of juice-containing berries growing in the Turkestan region were used as sources of yeast cultures. Of 180 isolated yeast species, the majority are Saccharomyces - 159, 71 pure cultures are the most typical for the region and suitable for fermentation. A subsequent study of the morphological characteristics of cells, physiological and biochemical properties, clarification of antagonistic activity, and resistance to antibiotics made it possible for further selection of strains. The most highly active and appropriate by technological parameters were selected: Saccharomyces cerevisiae Al-06 (from grapes), Saccharomyces cerevisiae Gl-8 (from sugar sorghum juice) and Saccharomyces cerevisiae-Az-12 (from pomegranate juice). Thus, the analyzes showed the possibility of using plant materials not only as freshly squeezed juice of pomegranate, cherry, grape, watermelon juice, sugar cargo, but also as sources of active yeast.

Key words: yeast, Saccharomyces cerevisiae, pomegranate, fruit, berries, fermented juice.

Introduction. An analysis of the health status of the population in Kazakhstan shows that many residents of the country have certain health problems that depend on many factors, including their living conditions. At the same time, one of the serious factors is the environmental impact on public health. High levels of environmental pollution create stressful conditions for the human body. Fruits and vegetables are rich in vitamins, minerals, fiber, etc. They are not only beneficial for the body, but also able to remove toxins and various types of pollutants from the body [1-2]. The Turkestan region is the southernmost part of the country, with a long summer period and is rich in a number of medicinal, fodder, fruit and vegetable, ornamental plants characteristic of the Tien Shan floristic region. The climatic conditions of the Turkestan region allow growing a number of different fruits and vegetables [3]. Fruits containing various organic acids, sugar and other food sources of yeast and predominantly populated by yeast.

The yeast strains associated with fruit surfaces are capable of converting large amounts of sugars into alcohol, and they can also tolerate a high concentration of alcohol. Although yeasts of different genera Kloecckera, Hansensiaspora, Candida, Pichia are involved in the process of transformation of sugars into acids and alcohols, in most cases, Saccharomyces species dominate the final stage of fermentation than any other types of yeast [4-8]. When cultivating yeast, like most living organisms, maintaining a certain temperature is of great importance. At the same time, the overwhelming majority of yeast species belong to the group of mesophilic microorganisms with temperature limits of growth ranging from 2–5 to 30–37⁰ C and optimum at 26–28⁰ C. True yeast thermophiles are not known among the yeast, for growth of which temperatures are higher 50⁰ – 60⁰ C [5, 7].

Aim of the study: development of a fermented beverage based on selected yeasts.

Materials and methods. For extract the yeast cells we used the most acceptable methods, including washing with sterile water and scraping with a sterile scalpel. The sources of yeast cultures used washed from the surface of juice-bearing berries growing in the Turkestan region, as well as fresh juices obtained under sterile conditions, including pomegranate juice, cherry, red grapes, watermelon juice, table beet juice, sargo juice. The presence of yeast in them can be set directly under the microscope or after
concentrating on centrifuges at a frequency of 2000 rpm for 15–20 minutes. Samples of liquids were taken in sterile vessels [6, 13].

Wort agar was used as nutrient media; Sabur agar (glucose-peptone media), mycelium formation was investigated on corn-glucose agar medium. These media are used to fully account for and isolate most types of yeast. The most widely used full-fledged medium for growing yeast is also malt wort. It consists of glucose, fructose, sucrose, maltose, maltotriose and maltotetraose, as well as a small amount of pentoses - arabinose, xylose and ribose. Nitrogen components make up 6-7% dry matter (DM), among them ammonium nitrogen is 2.18-2.44 mg per 100 ml. In the wort there are amino acids, all the main B vitamins and minerals, the content of which depends on the water used. The wort is obtained from breweries. It is diluted with tap water to a concentration of 6-8% of DM. Wort agar can be made from dry malt extract. 20 g of the powder is dissolved in 400 ml of hot distilled water containing 12 g of agar, and sterilized at 121 °C for 15 minutes. After sowing, the plates are incubated 24 hours in the usual position so that the agar adsorbs the liquid, and then the Petri dishes are inverted to avoid dropping condensate from the lid to the surface [14-19].

Incubating yeast on dense media from the suspension being studied is made with a pipette, with 0.5 ml or one drop of the measured volume in each dish. A drop of the test suspension containing yeast cells is applied to the surface of the agarized solidified medium in a Petri dish. After that, a sterile glass spatula evenly distribute the drop to the surface. With the same spatula, you can still sow 2-3 dishes in case the first one is very dense growth of colonies [6, 9, 12].

The process of isolating a pure culture ends with the transfer from a separate, grown in isolation colony into a test tube. The isolated cultures were examined for cell homogeneity under a microscope, as well as the uniformity of the colonies on the plate during subsequent incubation [10-13].

Thus, the requirements that must be fulfilled in the research on determining the type of yeast are as follows: before determining each culture should be carefully checked for purity by microscopy and incubated on solid nutrient media; from each source culture, they prepare a so-called control culture by transferring it into a test tube with wort agar and retain its entire work period by definition. When describing morphological traits, standard media and cultivation methods are used, since these traits can vary significantly depending on the medium composition and growing conditions [12, 13].

Research results. Microorganisms isolated from various plant substrates were mostly separate budding cells, and yeasts were also found, forming pseudomyccellum and individual species with a true well-formed mycelium. Among the studied representatives of the yeast were typical representatives of Oosporidium, also met Rhodotula, capable of forming primitive pseudomyccellum, colonies have a pronounced rather bright red or orange color; individual grown colonies in many respects belonged to Candida cells.

The results of the selection of pure cultures of *Saccharomyces* yeast are presented in table 1.

Of the 180 different types of isolated yeast, most belong to *Saccharomyces* 159 and only 21 cultures to *Dipodascaceae*, 71 pure cultures were isolated.

<table>
<thead>
<tr>
<th>Research raw materials</th>
<th>The number of analyzed colonies on the dishes</th>
<th>Isolated pure cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Estimated</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Cherry</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Grape</td>
<td>65</td>
<td>33</td>
</tr>
<tr>
<td>Watermelon</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Beet</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Sugar Cargo</td>
<td>43</td>
<td>32</td>
</tr>
</tbody>
</table>

Since the main goal of these studies is the development of a fermented drink, yeast capable of transforming sugars into biologically active substances useful for the body was selected from all yeast. Among the selected cultures, preference was given to representatives of the culture *Saccharomyces*, the family of *Saccharomycetaceae*. The sizes of the studied single cultures varied in width on average from 4.5 μm to 9 μm and in length up to 10 μm. Form predominantly rounded, oval, elongated.
The most promising were Saccharomyces cerevisiae strains isolated from grapes, sugar sargo juice and pomegranate juice, which were obtained by multiple inoculation of individual yeast colonies on solid nutrient media. A further study of the morphological features of the cells, physiological and biochemical properties, clarification of the antagonistic activity, resistance to antibiotics made it possible for further selection. As a result, the strains identified as the following strains of the yeast Saccharomyces cerevisiae Al-06 (from grapes), Saccharomyces cerevisiae GI-8 (from sugar sargo juice) and Saccharomyces cerevisiae Az-12 (from pomegranate juice), belong to the Saccharomycececececeae family species Saccharomyces.

Biological species of the genus Saccharomyces are a good model for studying the fundamental biological processes: speciation and adaptability of organisms to the environment. Currently, the genus Saccharomyces is clearly defined and includes, in addition to S. cerevisiae, the species S. arboricola, S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae and S. Paradoxus [5]. The cultural gene pool of Saccharomyces yeast is represented by S. cerevisiae and S. bayanus species. Different strains of yeast used in the production of various drinks allow you to get drinks unique in taste and aroma [14-18].

Yeast culture Saccharomyces cerevisiae Al-06 (from grapes) grows in 1.5% milk at a temperature of 30 °C, fermentation of milk does not occur, gas (CO₂) is formed during the fermentation of juices. When they growth in a solid medium, form beige colonies in a round shape 1.5-2.0 mm in diameter. The culture has a characteristic smell of yeast. The strain does not form pigments diffusing into the medium (figure 1).

![Figure 1 – Culture of the yeast Saccharomyces cerevisiae Al-06 (from grapes)](image1)

The average cell size is 6.5 × 7.2 μm. The shape of the cells is oval and rounded. Reproduces by budding.

On aqueous agar containing sodium acetate cells form asci with spherical spores with smooth shells, 1 to 4 in cell. Colonies are large, smooth, and convex, with smooth edges on the malt wort agar.

Physiological and biochemical properties. Many simple compounds, such as glucose, fructose, galactose, sucrose, glycerin, can be used as a carbon source. As a result of the fermentation of sugars, CO₂ and ethanol are formed.

Features of growth: Temperature optimum is 26 ± 1 °C. Cells grow in the range of 4 °C to 40 °C. The optimum pH of the medium is 4.5-5.5. Keeps viability in the pH range from 2.0 to 10. It grows when the content of bile in the medium is up to 2.5%.

The cultural and morphological properties of Saccharomyces cerevisiae GI-8 yeast strain (from sugar sargo juice) are the following: On the surface of a solid agar medium, round convex, light cream-colored opaque colonies with a smooth edge, 3-3.5 mm in size, smooth surface, glitters, the consistency is soft, buttery (figure 2).

![Figure 2 – Yeast culture of Saccharomyces cerevisiae GI-8 (from sugar sargo juice)](image2)
The average cell size is 5.0 × 8.7 μm. The shape of the cells is oval and rounded. Reproduces by budding. On agar medium containing sodium acetate, the cells form aski with spores of spherical shape with smooth shells, 1–4 askies in cell.

Physiological and biochemical properties. Ferments: glucose, sucrose, maltose, galactose, 1/3 raffinose. Does not ferment: lactose and simple dextrins.

Features of growth: Temperature optimum is 26 ± 1 °C. Cells grow in the range of 4 to 40 °C. The optimum pH of the medium is 3.5–5.5. Keeps viability in the pH range from 2.0 to 10. It grows when the content of bile in the medium is up to 2.5%.

Cultural and morphological properties of Saccharomyces cerevisiae Az-12 (from pomegranate juice): on the malt wort-agar colonies are small, smooth, convex, with plain edges (figure 3). The average cell size is 5.0 × 6.4 microns. The shape of the cells is mostly rounded. Reproduces by budding. The yeast does not form a yeast spore.

![Figure 3 – Culture of Saccharomyces cerevisiae Az-12 yeast (from pomegranate juice)](image)

Physiological and biochemical properties. Ferments: glucose, fructose, sucrose, maltose, maltotriose, does not use galactose, consumes pentose in a small amount - arabinose, xylose and ribose, can use many simple glycerol compounds as a carbon source, as a result of fermentation of sugars it forms CO₂ and ethyl alcohol.

Features of growth: The temperature optimum is 37 ± 1 °C. Cells grow in the range of 5 to 45 °C. The optimum pH of the medium is 3.5–5.5. Keeps viability in the pH range from 1.2 to 10. It grows when the content of bile in the medium is up to 3.0%.

In relation to oxygen, all of the studied strains are optional.

Antibiotic resistance: Saccharomyces cerevisiae AI-06 strains are resistant to gentamicin, cefazolin, amoxiclav, tetracycline, norfloxacin, vancomycin, erythromycin, ciprofloxacin, cefuroxime, amphotericin. Show moderate antagonistic properties in relation to E. coli.

The strain Saccharomyces cerevisiae GI-8 is resistant to gentamicin, oxacillin, amoxiclav, tetracycline, norfloxacin, vancomycin, erythromycin, ciprofloxacin, metronidazole, ketonazole, amphotericin. It shows pronounced antagonistic properties in relation to E. coli и Staphylococcus aureus.

Saccharomyces cerevisiae Az-12 is resistant to gentamicin, oxacillin, cefazolin, amoxiclav, tetracycline, norfloxacin, vancomycin, erythromycin, cefotaxime, ciprofloxacin, cefuroxime, metronidazole, ketonazole, amphotericin. They exhibit pronounced antagonistic properties against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

The most acceptable cultures were selected in accordance with their relatively fast ability to ferment fruit juices, where the leading factor was high organoleptic characteristics, natural fruit smell, without the appearance of turbidity or large sediment and a pleasant slightly sour taste (таблица 2).

Tasting evaluation of the finished product was carried out on a ten-point scale, where the leading indicators were: color, transparency, smell (aroma), taste, each of the above indicators was given the maximum and minimum rating, which was summarized and determined as the final one. The tasting was attended by students, teachers and technologists of food enterprises.

In the southern region of Kazakhstan, a large number of fruits, berries and vegetables are grown, but due to the lack of effective technologies for processing vegetable raw materials and recipes for obtaining fermented beverages, it is impossible to expand the range of fermented fruit drinks intended for the prevention of various common diseases.
The development of fermented beverages based on the juice of fruit and berry raw materials will allow to replenish the range of products for therapeutic and preventive purposes by enriching the final product with a number of functional ingredients, and as a result will give an overall improvement in the health of the population [19-20].

Table 2 – Chemical indicators and tasting evaluation of mixed fruit juices, fermented by experienced yeast

<table>
<thead>
<tr>
<th>Fruit Juice</th>
<th>Kind of Yeast</th>
<th>Volume fraction of ethyl alcohol,%</th>
<th>Mass concentration of sugars, g/dm³</th>
<th>Mass concentration of titratable acids, g/dm³</th>
<th>Mass concentration of volatile acids, g/dm³</th>
<th>Tasting evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watermelon juice</td>
<td>Saccharomyces cerevisiae Al-06</td>
<td>1,5</td>
<td>4,2</td>
<td>5,01</td>
<td>0,45</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Gl-8</td>
<td>2,3</td>
<td>3,1</td>
<td>5,64</td>
<td>0,51</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Az-12</td>
<td>1,6</td>
<td>3,9</td>
<td>5,21</td>
<td>0,54</td>
<td>8</td>
</tr>
<tr>
<td>Pomegranate juice</td>
<td>Saccharomyces cerevisiae Al-06</td>
<td>2,6</td>
<td>5,8</td>
<td>6,93</td>
<td>0,72</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Gl-8</td>
<td>3,7</td>
<td>4,1</td>
<td>7,82</td>
<td>0,75</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Az-12</td>
<td>2,8</td>
<td>5,3</td>
<td>6,15</td>
<td>0,78</td>
<td>9</td>
</tr>
<tr>
<td>Mixed juice (watermelon-pomegranate)</td>
<td>Saccharomyces cerevisiae Al-06</td>
<td>2,3</td>
<td>4,9</td>
<td>5,92</td>
<td>0,55</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Gl-8</td>
<td>3,1</td>
<td>2,7</td>
<td>8,43</td>
<td>0,59</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Saccharomyces cerevisiae Az-12</td>
<td>1,8</td>
<td>4,5</td>
<td>5,15</td>
<td>0,64</td>
<td>10</td>
</tr>
</tbody>
</table>

Thus, performed analyzes show the possibility of using plant materials not only as freshly squeezed juice of pomegranate, cherry, grapes, watermelon juice, sugar sargo juice, but also as sources of active yeast. Of the yeast isolated from plant substrates, the most acceptable from a technological point of view, as well as those with pronounced antagonistic abilities in relation pathogens are Saccharomyces cerevisiae Az-12 and Saccharomyces cerevisiae Gl-8.

Acknowledgements: The financial support was implemented by the Project Agreement №164-24 “Scientific-practical bases of microencapsulation of bioactive substances and principally new stimulators of plant development with the purpose of agricultural production intensification” of the Ministry of Education and Sciences of the Republic of Kazakhstan.

Conclusion. As a result of the selecting work, Saccharomyces cerevisiae strains isolated from grapes, sugar sargo juice and pomegranate juice were chosen and obtained by multiple passages of individual yeast colonies on solid nutrient media and identified as Saccharomyces cerevisiae Al-06, Saccharomyces cerevisiae Gl-8 and Saccharomyces cerevisiae Az-12.

The most promising were Saccharomyces cerevisiae Gul-8 and Saccharomyces cerevisiae Az-12 with the ability to ferment fruit juices relatively quickly, and the leading factor was high product quality: organoleptic characteristics, natural fruit odor, no turbidity, and a pleasant slightly sweet, slightly sour taste.

А.А. Сапарбекова¹, А.С. Латиф², З.Р. Ахмедова²

¹Южно-Казахстанский государственный университет им. М. Ауэзова, Шымкент, Казахстан;
²Институт микробиологии Академии наук Республики Узбекистан, Ташкент, Узбекистан

СЕЛЕКЦИЯ АКТИВНЫХ ШТАММОВ ДРОЖЖЕЙ ДЛЯ ФЕРМЕНТАТИРОВАННЫХ НАПИТОКОВ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ

Аннотация. Анализ состояния здоровья населения в Казахстане показывает, что проблемы со здоровьем в той или иной мере имеют многие жители страны, которые зависят от многих факторов, включаю и условия их проживания. Фрукты и овощи, обладая высоким содержанием витаминов, минералов, клетчатки и т.д., не
только благоприятно воздействуют на организм в целом, но и способны выводить токсины и различные виды поллютантов из организма. Фрукты, содержащие различные органические кислоты, сахар и другие источники питания дрожжей, преимущественно населяют дрожжами.

В качестве источников дрожжевых культур использовали свежие соки, полученные в стерилизных условиях, в том числе сок граната, вишни, черешни, красного винограда, арбузный сок, сок столовой свеклы, сок сахарного сарго, а также смеси с поверхности сосудов нарезающих ягод, произрастающих в Туркестанской области. Так как основной целью данной работы было разработка ферментированного напитка, из выделенных культур микроорганизмов селективно отбирали дрожжи, способные трансформировать сахара в биологически активные вещества, полезные для организма.

Среди выделенных культур преимущество отдавали представителям культуры класса сахаромицетов семейства Saccharomycesae. Размеры исследуемых одиночных культур варьировали по ширине в среднем от 4,5 мкм до 9 мкм и по длине до 10 мкм. Формы преимущественно округлые, овальные, удлиненные. Из 180 выделенных видов дрожжей большинство относится к Saccharomyces – 159, как наиболее типичные для данного региона и призываемые для ферментации выделена 71 чистая культура. Последующее изучение морфологических особенностей клеток, физиологических и биохимических свойств, проявлений антагонистической активности, устойчивости к антибиотикам дало возможность для дальнейшей селекции штаммов. Наиболее высокоактивные и соответствующие по технологическим параметрам были отобраны: Saccharomyces cerevisiae AI-06 (из винограда), Saccharomyces cerevisiae GI-8 (из сока сахарного сарго) и Saccharomyces cerevisiae – Az-12 (из гранатового сока).

Таким образом, проведенные анализы показали возможность использования растительного сырья не только в качестве соков высоких соков граната, вишни, винограда, арбузного сока, сахарного сарго, но и в качестве источника активных дрожжей.

Получение ферментированных напитков на основе соков плодово-ягодного сырья позволяет пополнить ассортимент продуктов лечебно-профилактического назначения за счет обогащения конечного продукта рядом функциональных ингредиентов, и как следствие дает общее улучшение здоровья у населения.

Ключевые слова: дрожжи, Saccharomyces cerevisiae, гранат, фрукты, ягоды, ферментированный сок.

А.А. Сапарбекова, А.С. Латиф, З.Р. Ахмедова

1 М.Усев атыннан Оңтүстік Қазақстан мемлекеттік университеті, Шымкент, Қазақстан;
2 Өңбекстан Республикасының ырыңды академиясының микробиология институты, Ташкент, Өнбекстан

ОСИМДІҚ ШІҚЗАТЫҢЫНАН ФЕРМЕНТЕТГЕН СУСЫНГА АРНАЛҒАН АШЫТКЫНЫҢ БЕЛБЕІДІ ШІТТАММ СЕЛЕКЦИЯСЫ

Аннотация. Қазақстандағы қалпықтағы денсаулық ықылын тағдарга даярданың денсаулық мезелері қандай да бір дәрежеде ең бір кеңестегі тұрғындарында кезделестіңін көрсетеді ері бұл олардың өмір сүру ықылын коса алғандықтан, көптеген факторларда байланысты. Жемістер мен көкіндер витаминдерін, минералдардың, клетчаткасының жогары құрамына не болға отырып, жаңалаған ықылы белгілі есеп етін қана қоймайды, сонымен қатар ұяқ пен түрлі поллютанттары ағзадан шығаруға кабілетті. Құрамына түрлі органикалық қышқылдар, қант және ашытқы қоректенуірлідің басқа да құз кезделсінің жемістер негізінен ашытқы құрамының орналасқанды.

Ашытқы даярдың құзі ретінде стерильді ықылына алынған жаңа ықылы, сондың ішінде аңар ышы, тәтті ышы, қысыл қуәздің, қарбаз, асман қызылшысы, қант соргосының ықылы, сондай-ақ үркіндік облысына әсетін құрамына ықылы бар жағдайда емірсін шайынын ғайданыны. Осы құралының негізі қалың ақшақты ферментациялық сұсынды және айтылуын, микроорганизмдердің білінген даярдағы құралы биологиялық белсенді жаттарына ағзға пайдалы түрлідік кабілетті ашытқы қырелділік алынды.

Білінген даярда арасында сахаромицет класының окілдеріне, Saccharomycesae тұқымдасына артықшылық берді. Зерттелетін бір даяр молшері ең бойынша орташа 4,5 мкм-ден 9 мкм-ге дейін және ұзындығы бойынша 10 мкм-ге дейін өзгеріп өтеді. Нысаны негізінен дейінгілес, сондықтан 180 білінген ашытқы түрлің көпшілігі Saccharomycesae-159-ға жатады, осы айық маңын өз түпнұсқа және ферментациялық жұқылы қолайлы 71 тағда даяр болды. Құрамына өз физиологиялық әрекетшелерің, физиологиялық және биохимиялық қасіреттер, антагонистик белсенділік, антибиотиктерге тәмізділік кейіннен зерттеу шатамдарды оралды ері селекциялыға мүмкіндік берді. Ең қатар құрасты ықылы технологиялық параметрлер бойынша сейкес келетін: Saccharomyces cerevisiae AI-06 (қуәзімен), Saccharomyces cerevisiae GI-8 (қант сарго ықылына) және Saccharomyces cerevisiae – Az - 12 (анар ықылына) іріктел алынды.
Осъзайаша жургитилген талдулар всімдик шикізаттын анар, шне, жууым, карсьылык, кант соросының шырыны ретінде гана емес, сонъының катар фелсенди ашыкты көзі ретінде пайдалану мүмкіндігін керсетті.

Жеміс-жылу шикізаттын шырыны негізінде ферменттіледісі сүсү алу емдеме-профилактикалық мақсаттағы өңдіршіәр ассортивментің бірінші функционалдық иңгізедіндердің сонғы өнімді байтуы есебінен толықтыруға және өсімдік садағына халықтар денсаулығын жақсартуға мүмкіндік береді.

Түйін сөздер: ашыкты, Saccharomyces cerevisiae, анар, жеміс, жылу, ферменттілген шырыны.

Information about authors:
Saparbekova A.A., Associate Professor, Department of Biotechnology, candidate of biological sciences, M.Auezov South Kazakhstan State University, Shymkent, Kazakhstan, almira.saparbekova@mail.ru, https://orcid.org/0000-0002-5630-7402;
Latif A.S., PhD student, Department of Biotechnology, M. Auezov South-Kazakhstan State University, Shymkent, Kazakhstan, latif-azia@mail.ru, https://orcid.org/0000-0001-5165-1530;
Ahmedova Z.R., Professor, Department of Microbiology, Doctor of Biological Sciences, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan, zahro.ahmedova@mail.ru, https://orcid.org/0000-0001-8406-6944

REFERENCES

[18] Noriko Komatsuzaki, Rina Okumura, Mika Sakurai, Yukihide Ueki, Jun Shim (2016) Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making, Progress in Biological Sciences. V. 6, Number 1, P.55-63