SYNTHESIS AND STRUCTURE OF HYDRAZONE DERIVATIVES OF HARMINE

Abstract. The present paper deals with chemical synthesis based on 8-acetylharmine. It was established that interaction of 8-acetylharmine with hydrazine hydrate produces (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9-N-pyrido[3,4-b]indole in a yield of 69%. It was shown that reaction of (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9-N-pyrido[3,4-b]indole with functionally substituted aromatic aldehydes (anisaldehyde, 2-fluorobenzaldehyde, 2,4-dimethoxybenzaldehyde) by boiling in methanol leads to the formation of the corresponding N-arylidenehydrazones with 56-82% yields. The structure of the synthesized compounds was characterized on the basis of one-dimensional 1H, 13C and DEPT NMR methods, as well as data from two-dimensional COSY, HMOC, and HMBC spectra, elemental analysis and mass spectra. Correlation spectroscopic methods provided information for identification of three bond protons-protons and one bond protons-carbons correlations COSY (1H-1H) and HMQC (1H-13C, 1H-15N). Homo- and heteronuclear interactions, confirming the structures of new derivatives of harmine, are determined. The use of modern physicochemical and spectroscopic research methods in the present work allowed reliable and unambiguous characterization of the structure and properties of the obtained compounds.

Key words: harmine, hydrazone derivative of 8-acetylharmine, N-arylidenehydrazones, 1H-, 13C-NMR spectra, two-dimensional NMR spectra.

Introduction. It is well known that modification of alkaloids gives a wide opportunity to obtain compounds whose biological activity spectrum is significantly expanded and modified in comparison with the starting substance.

In order to search for new synthons and biologically active compounds and to find effective drugs of a given spectrum of activity, a chemical modification of the alkaloid harmine was carried out [1]. Alkaloid of β-carboline type harmine 1 is contained in the plant Peganum harmala L., widely distributed on the territory of Republic of Kazakhstan.

According to the literature data, the indole alkaloid harmine 1 has a wide spectrum of pharmacological activity. Harmine affects the central nervous system, showing neuroprotective activity in neurological diseases. Derivatives of harmine have neurotropic activity, and its water-soluble form, harmine hydrochloride, has antidepressant, antihypoxic (hypobaric hypoxia) and anti-Parkinson effects [1-6].

Moreover, it should be noted that in recent years, the synthesis of hydrazones has attracted great attention not only because of the significant biological activity of the target compounds, but also because the possible synthesis of various heterocycles based on them, including energy-intensive materials.

In this regard, our aim was to continue research on the transformation of the available alkaloid harmine in order to obtain new biologically active compounds.

Experimental part. Earlier, we published effective methods for the synthesis of derivatives of β-carboline alkaloids 8-formylharmine and 8-acetylharmine. By the condensation of 8-acetylharmine 2 with aromatic aldehydes the corresponding chalcones were synthesized, the reaction of which with hydrazine hydrate in acetic acid resulted in 3-substituted 1-acetylpyrazolines [7-11].
In continuation of our work, new derivatives of the alkaloid harmine 1 were synthesized; on the basis of 8-acetylharmine 2, 8-acetylhydrazone harmine 3 was synthesized and a number of N-arylidenehydrazones harmine 4-6 were obtained with a yield of 56-82% (scheme 1).

The structure of the synthesized compounds was characterized by the complex of physicochemical methods: IR, UV, one-dimensional NMR 1H, 13C and DEPT and two-dimensional COSY spectroscopy (1H-1H), HMQC, HMBC (1H-13C, and 1H-15N), mass spectrometry and elemental analysis data.

Materials and research methods. The 1H and 13C NMR spectra were recorded on a JEOL JNM-ECZR 500 MHz spectrometer (500 MHz 1H and 125 MHz 13C). The 19F NMR spectrum of compound 5 was recorded on a JEOL JNM-ECZR 500 MHz spectrometer (282 MHz) in CDC$_b$. The 15N NMR spectra were obtained on a JEOL JNM-ECZR 500 MHz (60.84 MHz) in CD$_3$OD using CH$_3$NO, as monitor sample δN 167.6 ppm.

Different types of proton-proton and carbon-proton correlation spectroscopy were used to assign signals in the NMR spectra (COSY, DEPT, HMQC, HMBC). High-resolution mass spectra were recorded on a DFS Thermo Scientific mass spectrometer, evaporator's temperature 150-240 °C, EI ionization (70 eV). Melting points were determined on Opti Melt apparatus. The reaction progress was monitored by TLC method on Silufol UV-254 plates. For the detection of alkaloids derivatives the Dragendorff's reagent was used. The reaction products were isolated by column chromatography on Al$_2$O$_3$ (stage II act.).

Results of the study. We have established that the interaction of 8-acetylharmine 2 with an excessive amount of hydrazine hydrate in ethanol leads to the formation of (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole 3, yield 69%, composition C$_{15}$H$_{16}$N$_4$O, melting point 207-209 °C, $[\alpha]_D$ -187.5 (c 0.16; CH$_2$Cl$_2$).

N-arylidenehydrazones of harmine 4-6 were prepared (yield 65-83%) starting from (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole 3 which easily reacted with functionally substituted aromatic aldehydes (anisaldehyde, 2-fluorobenzaldehyde, 2,4-dimethoxybenzaldehyde).

The IR-spectrum of compounds 3-6 contain intense stretching bands at 3327-3220 cm$^{-1}$, which belong to the (–NH) group, and at 3178-2827 cm$^{-1}$ (C–H aromatic and methoxy groups). In the spectra of all compounds, a set of absorption bands was observed in the region of 1617–1606, and 1569–1418 cm$^{-1}$, corresponding to the presence of aromatic groups in the structure (C=C) and (C=O). The bending vibrations of the C=N–N groups correspond to bands 1293–1202 and 1113 cm$^{-1}$.
In the 1H NMR spectrum of (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole 3, singlet signals were observed in the region of δ 2.71 and 2.12 ppm, corresponding to proton signals of the methyl groups at C-1 and C-12. Signals of protons of the methoxy group at C-7 were observed in the region of δ 3.86 ppm in a form of singlet. The proton signals H-3, H-4, H-5, H-6 of the β-carboline core appear at δ 8.15, 7.81, 8.12 and 7.04 ppm, with coupling of 5.8; 5.8; 8.2; 8.2 Hz, respectively. The characteristic signal of NH$_2$ groups was observed in the low field in the region of δ 8.03 and 8.05 ppm. The proton signal of the N-H group of the pyrrole ring was observed in the low magnetic field at δ 10.51 ppm.

The 13C NMR spectrum of compound 3 contained 6 singlet signals at 116.47, 123.36, 135.64, 138.67, 141.58, 156.81 ppm, characteristic for carbon atoms C-4a and C-4b, C-9a, C-8a, C-1, C-7, as well as 5 doublet signals at δ 105.80, 105.82, 129.02, 137.24 ppm related to carbon atoms C-6, C-8, C-4, C-5, C-3, respectively. The signals of carbon atoms related to CH$_3$CN, -CH$_3$, -OCH$_3$, were observed at δ 18.51, 21.94, 55.55 ppm, in the form of quartets. The carbon atom C=N appears as a singlet at δ 145.95 ppm.

For assignment of all 1H and 13C NMR signals, a number of two-dimensional spectroscopic methods were used: 1H--1H COSY, 1H--13C HSQC, 1H--13C HMBC, and 1H--15N HMBC.

The 1H and 13C NMR spectra of synthesized derivatives of harmine 4-6 contained a set of characteristic signals of protons and carbon atoms of the β-carboline core and the corresponding substituent. The proton CH= of side chain in the 1H NMR spectrum of compounds 4-6 resonated as a broadened singlet in the region of δ 8.73-8.32 ppm. Signals, characteristic for the protons of the aromatic ring H-3'-5' appeared at δ 6.18-8.69 ppm, respectively. The characteristic signals of carbon atoms in the 13C NMR spectra belonging to -CH$_3$C=N, -CH$_3$, (-OCH$_3$)$_2$, groups occurred in the regions of δ 19.84-19.94, 20.21-20.42, 55.56-56.43 ppm, respectively, as quartets. Doublet (d) signal related to the CH=N substituent was observed at δ 150.43-157.20 ppm. The singlet signal of the -C=N group in the C-8 substituent shifted to the low magnetic field relative to the location in the spectrum of hydrazone 3 and were detected at δ 163.59-167.68 ppm.

The correct assignment of signals in the 1H NMR spectrum of compound 3 confirm the two-dimensional 1H--1H COSY correlation spectra (Fig. 1).

For compound 3, the 1H--1H COSY spectrum shows the spin-spin correlation between the protons of methine groups: H-3 and H-4 of the pyridine ring with a cross peak of 8.15, 7.81 ppm (doublets with $J = 5.8$ Hz) and between H-5 and H-6 of the aromatic ring with the correlation of signals at δ 8.12, 7.04 ppm (J coupling of 8.2 Hz).
The assignment of signals in the 15N NMR spectra was carried out according to the two-dimensional spectrum of the inverse correlation of 1H--15N on the long-range interactions (HMBC). To assign the chemical shifts of carbon atoms that are not related to hydrogen atoms, heteronuclear correlation methods for long-range bonds were applied: 1H--13C HMBC (Fig. 2) and 1H--15N HMBC (Fig. 3) [19]. With the help of the correlation spectra for long-range bonds all carbon atoms that are not connected with hydrogen atoms in the molecule were uniquely determined, thereby completely confirming the structure of the obtained compounds 3-6.

The 1H--13C HMBC showed correlation peaks of the CH$_3$ protons (C-13) with C-8 and C=N atoms. CH$_3$ protons (C-10) interacted with atoms C-1 and C-3. Protons of OCH$_3$ (C-11) correlated with the C-7 atom. This experiment confirmed the assignment of the methyl groups.

An analysis of the 1H--15N HMBC spectra showed that the CH$_3$ proton (C-13) (δ 2.12 ppm), showed correlation with the nitrogen atom of the group C=N at δ 310 ppm. Proton H-3 (doublet, δ 8.15 ppm), and the CH$_3$ protons (C-10) (δ 2.71 ppm), showed interaction with a nitrogen atom in position 2 of the pyridine ring (δN 280 ppm).

All of these data suggest that the synthesized compound has the following structure (Figure 4).

Experimental part. (E)-8-(1-hydrazonoethyl)-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole (3). Solution of 0.5 g (1.96 mol) 8-acetylharmine 2 in 25 ml of ethanol was stirred, and meanwhile 2.94 g (0.06 mol) of hydrazine hydrate was added dropwise in excess. The reaction mixture was stirred for 7-8 hours at a temperature of 60 °C. The precipitate formed was filtered and recrystallized from EtOH. Yield 69%, yellow paurocrystalline powder, melting point 207-209 °C, $[\alpha]_D^{26}$ -187.5 (c 0.16; CHCl$_3$).

UV-spectrum (EtOH), λ_{max}/nm (log ε): 213 (2.85), 243 (2.99), 302 (2.66), 328 (2.22), 341 (2.17). IR-spectrum (KBr, ν, cm$^{-1}$): 3327, 3220, (NH), 3170, 3096, 2890, 2827 (-C-H), 2983, 2927, 2915, (-OCH$_3$ of phenyl fragment), 1617 (-C=N), 1569, 1446, 1418 (-C-C), 1293, 1222, 1202 (-C=N-N), 1113 (-N-N).
1H NMR spectrum (500 MHz, DMSO, δ, ppm, J/Hz): 2.12 (3H, s, CH3CN), 2.71 (3H, s, CH3), 3.86 (3H, s, OCH3), 7.04 (1H, d, J=8.2, H-6), 7.81 (1H, d, J=5.8, H-4), 8.03, 8.05 (2H, s, NH), 8.12 (1H, d, J=8.2, H-5), 8.15 (1H, d, J=5.8, H-3), 10.51 (1H, br. s, NH). 13C NMR spectrum (125 MHz, CDCl3, δ, ppm): s. 141.58 (C-1); d. 137.24 (C-3); d. 112.1 (C-4); s. 116.9 (C-4a); s. 128.14 (C-1'); d. 114.40 (C-3',5'); d. 130.27 (C-2',6'). Mass spectrum, m/z (Irel, %): 343 (100), 374 (58), 386.1737. C23H22N2O2. Calculated, m/z: 386.1737.

Elemental analysis: found, %: C 70.47; H 5.11; N 14.31.

2-(1-(E)-(2-fluorobenzylidene)hydrazono)ethyl)-1-methyl-9H-pyrido[3,4-b]indole (5). To a solution of 0.1 g (0.37 mol) of (E)-1-(2-fluorobenzylidene)hydrazono)ethyl)-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole 3 in 10 ml of methanol, while stirring 0.092 g (2 mol) of 2-fluorobenzaldehyde was added dropwise in 5 ml of methanol. The reaction mixture was stirred for 4 hours at 60-65 °C. The precipitate formed was filtered off and recrystallized from ethanol. C23H22N2O2. Calculated, m/z: 386.1739 [M+]. C23H22N2O2. Calculated, m/z: 386.1737.

Elemental analysis: found, %: C 71.45; H 5.72; N 14.15.
dropwise with stirring in 5 ml of methanol. The reaction mixture was stirred for 4 hours at a temperature of 60-65 °C. The precipitate formed was filtered and recrystallized from ethanol. Yield 75%, C₂₄H₂₄N₄O₃, [α]^D+125 (c 0.16; chloroform). UV-spectrum (EtOH, λ_{max}/nm (log ε): 216 (2.78), 236 (3.26), 293 (2.26), 317 (2.17). IR-spectrum (KBr, v, cm⁻¹): 3220 (-NH), 3178, 3107, 3004, 2851, 2837 (-С-Н), 2970, 2926 (-ОСН₃ of phenyl fragment), 1623, 1606 (-C=N), 1570, 1462, 1421 (-С-С), 1290, 1271, 1226 (-C=N-N), 1173 (-N-N).

1H NMR spectrum (500 MHz, CDCl₃, δ, ppm, J/Hz): 2.54, (3H, s, CH₃); 2.68 (3H, s, -CH₃); 3.70 (3H, s, -OCH₃); 3.71 (3H, s, -OCH₃); 3.95 (3H, s, OCH₃); 6.18 (1H, dd, J = 8.7, H-3'); 6.32 (1H, d, J = 8.8, H-6'); 6.94 (1H, d, J = 8.7, H-5); 7.73 (1H, d, J = 5.3, H-4), 8.04 (1H, d, J = 8.7, H-5), 8.32 (1H, d, J = 5.3, H-3), 8.69 (1H, d, J = 6.8, H-5'), 8.76 (1H, br. s, H-16), 10.56 (1H, br. s, NH). 13C NMR spectrum (125 MHz, CDCl₃, δ, ppm): 24.33 (CH₃); 56.40 (OCH₃); 55.57 (OCH₃); 56.52 (OCH₃); 20.31 (CH₃); 98.39 (С-6'); 28.52 (С-3',5'); 155.01 (CH=N); 163.59 (C=N). Mass spectrum, m/z (Irel, %): 385 (100), 416 (32), 386 (26), 237 (11), 417 (9). Found, m/z: 416.1843 [M]+. C₂₄H₂₄N₄O₃. Calculated, m/z: 416.1840.

In conclusion, new methods for the preparation of harmine derivatives substituted at position C-8 were elaborated which allow subsequent modification of 8-acetylharmine to new N-arylidenehydrazones of harmine, the molecular structure of which was established on the basis of elemental analysis and spectral data (IR-, UV-, 1Н-, 13С-, 19F-, 15N- NMR).

The authors thank the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan for financial support of grant project No. AR05135304, as well as the Chemical Service Center for Collective Use of the NIOC SB RAS for spectral studies.
Синтез и строение гидразонпроизводных гармина

Аннотация. Известно, что модификация молекул алкалоидов дает широкую возможность получения соединений, спектр биологической активности которых значительно расширяется и видоизменяется по сравнению с исходным веществом.

С целью поиска новых синтонов и биологически активных соединений и изыскания на их основе эффективных лекарственных средств заложенного спектра действия проведена химическая модификация алкалоида гармина. Алкалоид β-карболинового типа гармин содержится в сырье гармалы обыкновенной (Peganum harmala L.), широко распространённом в Южном Казахстане.

Согласно литературным данным, индольный алкалоид гармин обладает широким спектром фармакологической активности. Гармин оказывает влияние на центральную нервную систему, проявляя нейропротекторную активность при нейрологических заболеваниях, ингибирует моноаминоксидазу A. Производные гармина обладают антимикробной активностью, а его водорастворимая форма — гидрохлорид гармина обладает антидепрессивным, противогипоксическим (гипобарическая гипоксия) и антипаркинсоническим действием.

Следует отметить, что в последние годы синтез гидразонов привлекает внимание не только значительной биологической активностью целевых соединений, но и возможностью синтеза на их основе разнообразных гетероциклов, в том числе энергоемких материалов.

В связи с этим нами продолжаются исследования по трансформации доступного алкалоида гармина с целью получения новых биологически активных соединений.

В работе представлены результаты синтеза на основе молекулы 8-ацетилгармина. При взаимодействии 8-ацетилгармина с гидразином гидратом получено (£)-8-(1-гидразонэтил)-7-метокси-1-метил-9^-пиридо[3,4-^индол
с выходом 69%. Показано, что реакция (£)-8-(1-гидразонэтил)-7-метокси-1-метил-9^-пиридо[3,4-^индола с функционально замещёнными ароматическими альдегидами (анисовый альдегид, 2-фторбензальдегид, 2,4-диметоксибензальдегид) при кипячении в метаноле приводит к образованию соответствующих N-арилиденгидразонов с выходами 56-82%. Охарактеризованы синтезированные соединения методами ЯМР одномерной 1H, 13C и DEPT, а также данными двумерных спектров COSY, HMQC, HMBC, элементного анализа и масс-спектров. Представлены схемы корреляций протонов с протонами через три связи и схемы корреляций протонов с углеродными атомами через одну связь COSY (1H - Н) и HMQC (1H-13C, 1H-15N), установлены гомо- и гетероядерные взаимодействия, подтверждающие структуры новых производных гармина. Применение в работе современных физико-химических и спектроскопических методов исследования позволило надежно и однозначно охарактеризовать строение и свойства полученных соединений.

Ключевые слова: гармин, гидразонпроизводное 8-ацетилгармина, N-арилиденгидразоны, ЯМР спектры, двумерные спектры.

Information about authors:
Amanzhan Asel, Master of Chemistry, JSC «International Research and Production Holding «Phytochemistry», M. Gazaliy str. 4, Karaganda 100009, Kazakhstan; e-mail: info@phyto.kz; https://orcid.org/0000-0002-0764-0988;
Zhanymkhanova Pernesh Zhaidarbekovna – Master of Engineering and Technology, JSC «International Research and Production Holding «Phytochemistry», M. Gazaliy str. 4, Karaganda 100009, Kazakhstan; info@phyto.kz; https://orcid.org/0000-0003-3575-9888;
Aidannly Baurzhan, Bachelor of Natural Science, JSC «International Research and Production Holding «Phytochemistry», M. Gazaliy str. 4, Karaganda 100009, Kazakhstan; info@phyto.kz; https://orcid.org/0000-0003-3315-5247;
Shults Elvira Eduardovna, Doctor of Chemical Sciences, professor, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia; e-mail: schultz@nioch.nsc.ru; https://orcid.org/0000-0002-0562-4782;

Turmukhambetov Aibek Zhurunovich, Doctor of Chemical Sciences, professor, JSC «International Research and Production Holding «Phytochemistry», M. Gazaliev str. 4, Karaganda 100009, Kazakhstan; e-mail: info@phyto.kz; https://orcid.org/0000-0002-5961-8265;

Adekenov Sergazy Mynzhasarovich, Doctor of Chemical Sciences, professor, JSC «International Research and Production Holding «Phytochemistry», M. Gazaliev str. 4, Karaganda 100009, Kazakhstan; e-mail: info@phyto.kz; https://orcid.org/0000-0001-7588-6174

REFERENCES

