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CORRECTNESS OF THE MIXED PROBLEM
FOR ONE CLASS OF DEGENERATE MULTIDIMENSIONAL
HYPERBOLO-PARABOLIC EQUATIONS

Abstract. It is known that in mathematical modeling of electromagnetic fields in space, the nature of the
electromagnetic process is determined by the properties of the medium. If the medium is non-conductive, we get
degenerate multi-dimensional hyperbolic equations. If the medium has a high conductivity, then we go to degenerate
multidimensional parabolic equations.

Consequently, the analysis of electromagnetic fields in complex media (for example, if the conductivity of the
medium changes) reduces to degenerate multidimensional hyperbolic-parabolic equations.

Also, it is known that the oscillations of elastic membranes in space according to the Hamilton principle can be
modeled by degenerating multidimensional hyperbolic equations.

Studying the process of heat propagation in a medium filled with mass leads to degenerate multidimensional
parabolic equations.

Consequently, by studying the mathematical modeling of the process of heat propagation in oscillating elastic
membranes, we also come to degenerate multidimensional hyperbolic-parabolic equations. When studying these
applications, it is necessary to obtain an explicit representation of the solutions of the studied problems.

The mixed problem for degenerate multidimensional hyperbolic equations was previously considered.

As far as is known, these questions for degenerate multidimensional hyperbolic-parabolic equations have not
been studied.

In this paper, unique solvability is shown and an explicit form of the classical solution of the mixed problem for
one class of degenerate multidimensional hyperbolic-parabolic equations is obtained.

Keywords: mixed problem, classical solution, unique solvability, Bessel functions, spherical functions.

item 1. Introduction. The mixed problem for degenerate multidimensional hyperbolic equations in
generalized spaces has been studied [1,2]. The correctness of this problem was proved in [3,4] and an
explicit form of the classical solution was obtained.

As far as we know, these questions have not been studied for degencrate multidimensional
hyperbolic-parabolic equations.

This article shows the unique solvability and obtains an explicit representation of the classical
solution of the mixed problem for one class of degenerate multidimensional hyperbolic-parabolic
equations.

item 2. Statement of the problem and results. Let Q , — the cylindrical region of the Euclidean

space £, of points (x,......x,.t) bounded by the cylinder I'= {(x,7): |x| =1}, the planes r =a >0 and
=<0, where |x|— the length of the vector x = (x,,...,x,) .

We denote by Q, and Q, the parts of the region Q,,, and by I',, I, the parts of the surface

aff °
I" lying in the half-spaces >0 and 1 <0; o, — the upper and o, — lower base of the arca Q.
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Let further §' be the common part of the boundaries of the regions Q, and Q ,, representing the set
{t=0,0<|x]<l} in E, .

In the domain Q_,, we consider degenerate multidimensional hyperbolic-parabolic equations.

af >
A u—u, + Zdi(x,r)uxi +e(x,Nu, >0,
0= = (1)

m

11 A e, + > a,(x.0, +b(x.0) +(x. 0, (<0,

i=1

where p,q =const, p>0, g=0, A, -isthe Laplace operator with respect to variables x,,....x, , m=>2.
In the future, it is convenient for us to switch from Cartesian coordinates x,,...,x,, f to spherical
r,0,.,60 .t r=20,0260<2r,0<0<7,i=23,.,m-1,68=(6,..6,,).

sl oY 1 2
Problem 1. Find the solution to equation (1) in the region Q,, when 7#0 the class C(ﬁaﬁ)ﬂ
'@, )N c'@,)N CXQ, UQ,). that satisfy the boundary conditions

.= 0(r,0). u|, =y, (t,6), )

Iy~ l//z(l‘,@), 3)

u

Uu

wherein q)(l,H): 1//1(05,19), y/l(O,H): 1//2(0,19).
Let be {Y k (9)} - a system of linearly independent spherical functions of ordern, 1<k <k ,

n,m n

(m -2k, = (n+m—3M2n+m-2), W)(S),1=0,,..- Sobolev space.
It takes place ([3]).
Lemma 1. Let f(r, 6’) eW, (S) If />m—1, then the series

£0)= " ) 6). @

and also the series obtained from it by differentiating order p </—m+1, converge absolutely and

evenly.
Lemma 2. In order that f (r, 6’) c W, (S ), it is necessary and sufficient that the coefficients of the

series (4) satisfy the inequalities

|f01(r)|£ cl,iin”

n=l k=1

2
k —
7 (r)| <c,, ¢,c,=const.

By d)(r,1), d'(r,0), € (r,0), d*(r,0), P, @ (r), wi (), Wi (c)., we denote the expansion
coefficients of the series (4) respectively, of the functions, d,-( .6, l)p, d, X P,
r
e(r,0.0)p, d(r,0,0)p, p(0). i =1....m. p(r.0), y,(1.0). w,(t.60), and p(@)e C*(H), H —the unit sphere
n E .
Let Dbe al.(r,H,r), b(r,H,r), c(r,H,r)e W;(Qﬁ)c C(ﬁﬂ), di(r,H,r), e(r,H,r)e W;(Qa) , i=1l..m,
I>m+1, e(r,H,r)S 0, V(r,H,t)e Q..




ISSN 1991-346X Series physico-mathematical. 6. 2020

Then fair
3
Theorem. If ofr-6) W2(S). y1.0)e W2 (1) y0) W2 (1) p>22 and
cosu, fB'#0,5s=12,.., %)
then Problem 1 is uniquely solvable, u , — where the positive zeros of the Bessel functions of the first

2+p
kind J , ,(z), p'= 2, n=0,l,..

2
item 3. Solvability of Problem 1. In the spherical coordinates of equation (1) in a regionQ_ it has

the form

m
Lu=t"\u_+
¥ ¥

! 0 0
E—Zmae (S n"™ I IQJEJ’ gIZL gj=(sin91...sin9j71)2, ]>1
J

-1, —izé'uj—ut +Zdi(r,¢9,r)uxi +e(r.60.0u=0, (6)
i=1

It is known (|5]) that the spectrum of an operator o consists of eigenvalues A, :n(n+m—2),
n=0,l,...., each of which corresponds £, to orthonormal eigenfunctions Y, "m (9)

The desired solution to problem 1 in the domain € will be sought in the form

u(r.6.1) ZZ (r.OY: (0 7)

n=0 k=1

where #*(r,) are the functions to be determined.
Substituting (7) into (6), multiplying the resulting expression by p(6)# 0, and integrating over the

unit sphere H , for " we obtain ([3,4])

-1 Z
qu(ilj()lrr_p(l)l_l()lt—i_{mqupé—i_ dl ju +eOru0r+
p Jk k
t'pfut — plut ( qu + d"ju +{e -, ==t > (d, —nd} =0.(8)
» 3 3

Now consider an infinite system of differential equations

L m-D
f‘*péuéw—péuh(mr Vgl =0, ©)

_ — -1 _ _ 1 —
t'pfu’ — plu’ + (m )tqpl"ul’j —ithpl" * :——{Z(d u, +eu j n=1,k=1k,
r r
(m-1) q ek ﬂn q kek 1 Jk o=k
pnunrr n nt TZ pnunr ]"_21 pnun - k_z Z(dinflunflr +
{nl Z(dm (n- l)dml} nl},k Lk, n=23.. (10)

It is easy to verify that if {uf }, k= E, n=0,1,... is a solution to system (9), (10), then it is a solution
to equation (8).




News of the National Academy of sciences of the Republic of Kazakhstan

It is easy to see that each equation of system (9), (10) can be represented as
(m_l)]/Tk ﬂnﬁrfc]_—:’:f;’k(’,’[)’ (11)

nr 2
r

nrr
r

t‘{ﬁ" +

where fn" (r,t) are determined from the previous equations of this system, at that ]_”01 (r,tH)=0.

Further, from the boundary condition (2), by virtue of (7), we have
Lk, n=0]1.... (12)

w/(r.a)=p/ (). @ (.0)=7,(). k=Lk,. n=0.L

tq(vn’;r +—_lvn’; ——/1;’ vn")—vn’j :fn"(r,r),
13 13
=0 k=Lt, n=01,..., (14)

s Ny

In (11), (12), changing the variables 0 (r,t) =u (r,r)— 7 (r) we obtain
(13)

ot (r.a) = ¢ (r). TF(Lr)
_ At _
Fir )= Fi(r )+l + el O (r) =2, (r)-wi (@)

()
Having replaced 0 (r.t)=r ? v*(r.t) the problem (13), (14), we reduce to the following problem

(15)

raf = v+ ot -ut = T
r
v ()= (). v;(Lr)=0. (16)
_ N3 =m)- ~ (1) (m1)
7= W8 e =r T e 70=r T )
The solution to problem (15), (16) is sought in the form
vf (r,r): 01’; (r,r)+v§n (r,r), 17)
where v (r, r)— is the solution to the problem
Lo (r.0)= £ (r1), (18)
ot (r,a)=0, vt (1,1r)=0, (19)
and vf (r,¢)— the solution to the problem
Luf =0, (20)
U;(n (r7 a) = @;tk (r)7 U;cn (17 Z) = O’ (2 1)
The solution to the above tasks, consider in the form
v 0)= 3 R0 @)
s=1
while let
7= a, 0r0). )= b R0). (23)
s=1 5=1
Substituting (22) into (18), (19), taking into account (23), we obtain
(24)

/ln
Ry, + %R+ R =0, 0<r <1,
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R(1)=0, |R(0)<e, (25)
T +wT(t)=-a, () 0<t<a, (26)
Ts(a =0. (27

A limited solution to problem (24), (25) is ([6])
R(r)=~rT () (28)
+ (m - 2)

where v:nT, u=pl,.

The solution to problem (26), (27) is the function

a

x| - Fan g ptn g
Ts,,,(r)—(exp[ et M as,n(f)[e pLie Jdé (9)

Substituting (28) in (23) we obtain

1 © 0

FT)= D0 O ) )= b ) 0<r <1 .

5=1 s=1

Series (30) are expansions in Fourier-Bessel series ([7]), if

00 [T 6 b a1

b, =2 SJI\/_ W, (£ ), (32)

where 4, s =1,2,...—the positive zeros of the Bassel functions J, (Z), are arranged in increasing order of

magnitude.
From (22), (28), (29) we obtain the solution to problem (18), (19)

v, r l ZJ— ,usnr) (33)

where a_, (¢) is determined from (31).

Further, substituting (22) into (20), (21), taking into account (23), we will have the problem

Tst +ILts2,nqu = O: 0 <i<a, Ts(a):bs,n:

s

which decision 1s
T.()=b.,exp ””1( a — 1) (34)

g+
From (28), (34) we obtain

k) 2
U;‘n(r’r): stnﬁexp[h(aqﬂ _tq+1 )}]\1( snr)’ (35)
— g+1 i
where b, , are from (32).

Therefore, first solving problem (9), (12) (n=0), and then (10), (12) (n=1), etc. we find
successively all v*(r,z) of (17), where vf (r,1), v (r,f) they are determined from (33), (35).
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So, in the field Q , takes place

j p(O)LudH =0, (36)

Let /(r,0,1) = R(r) p(O)T (1), at that R(r)eV,,V, — be dense inL,((0,1)), p(6)e C*(H), dense in
L,(H), and T(1)eV,,V,— dense inl,((0,er)). Then it is f(r,6,0)eV,.V=V,®H QV, - dense in
L,(,) (3.

From this and (36) it follows that

j S0, LudQ, =0
Q,
and
Lu=0,v(r,0,NeQ,_.
Thus, the solution to problem (1), (2) in the domain € _ is the function

00=3 3 00 Tl ok ol 0) o7

n=0 k=1
where v (r,r), vfn(r,r) are determined from (33), (35).

Given the formula ([7]), 2J(z)=J,,(z)~J,.,(z) estimates ([9, 5])

JV(Z): 1/% cos[z—%v —%j+0(z3—1/2j, v >0,

q

m=2
>

k

n

son

aaeq Y:, (9)( <en® ' j=Lm—1g=0l.. (38)
J

as well as lemmas, restrictions on the coefficients of equation (1) and on given functions as
y/l(r,H), q)(r,H), in [10], we can prove that the resulting solution (37) belongs to the class
c@,)~c'@,us)nc@,)

Further, from (33), (35), (37) for t - +0 we have

ir.00=-0)= 33 201 6)

n=0 k=l

o\ el ¢ : :
() =wi 0+ r I as)n(f)[exp'u;’”lfq”jdf +bs)n[exphaq”j T (). (39)
q+ q +1 =

s—1 0

kn

0l 60)=1(0)= 3N V()L 6) (@0

n=0 k=1
2y )
i) =v, - r 7 a,0)J ().
s=1 2

From (31) - (33), (38), as well as the lemmas, it follows that ‘r(r,H), v(r,H)e w) (S), > 37171

Thus, taking into account the boundary conditions (3), (39), (40) in the domain Q , we arrive at the
mixed problem for degenerate hyperbolic equations

Lu=|"Au—u,+ Zai (r.0.00, +b(r.0.0u, +c(r.0.t0 =0 (41)
i=1
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with data

u|S = r(r,@), u,|S = v(r,@), u| = l//z(t,H). 42)

Te
The following theorem was proved in [4]
Theorem 2. If z(r.0) v(r.0)e W, (S), y,(t.0)c W, (FB), [> 37m,then problem (41), (42) has a

unique solution if condition (5) is satisfied.

Further, using Theorem 2, we arrive at the solvability of Problem 1.

item 4. Uniqueness of the solution to Problem 1. First we consider the problem (1), (2) in the
domain € _ and prove its uniqueness to the solution. For this, we construct a solution to the first boundary

value problem for the equation
Lv=t'Av-v, - Zdl_uxi +dv=0, (6)

with data &
(r,0) = ZZ ‘(Y6 u], =0, (43)

where d(x,t)=e— 7(r)e G, G- many functions 7(r) from the class C([0,1])~C'((0,)).

=1

Scores G are dense everywhere in L, ((0,1))([8]) . Solution of the problem (6 *). (43) we will search in the

lx’ n

form (7), where the functions U (r,t) will be defined below. Then, similarly to item 2, the functions
or (r r) satisfy a system of equations of the form (9) - (10), where, respectively, dm, d’ are replaced
to —d*, —d*,and € to d*,i=1.,mk=1k n=01,...

Further, from the boundary condition (43), by virtue of (7), we arrive at the following problem
Ax=ﬂ@a L @
r
v (r0)=7:(r). v (L1)=0, (45)
(m1) ~ md) (m1)
O (r,)=r 2 o (r 1), frrt)=r = fH(r1), cf(r)=r T T(r).

The solution to problem (44), (45) will be sought in the form of (17), where 1)1’; (r, Z) is the solution to
the problem for equation (18) with data

= f5(r,0) (44)

0 (0) = 0,05 (11) = 0. 6)
Ufn (r, l)— solution of the problem for equation (20) with condition

v, (,0)=75(r),03,(1,1)= 0, (47)
The solutions to problem (18), (46) and (20), (47) respectively have the form

)= Kexp{ﬁﬂ“ B . (é)(exp(—ﬁw Baf}v (u,7).

o (r,1)= 2 T ﬁ(exp(:_i"l e DJ (,umr),
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where

o, =2 ) (Ve @, 1, v=nr =2

Thus, the solution of problem (6*), (43) in the form of a series

o ky M
ol 0.0= 33 10l () o (2 0).
n=0 k=1

constructed, which, by virtue of estimates (38), belongs to the class C (ﬁa) ~C' (ﬁa AS)YNC? (ﬁa) )

vl —uliv = —vP(u) + uP (L) —uvQ |
where

Pu)= quuxi cos(N*,x,), 0= cos(NL,r)— Zdi cos(N*,x,),
i=1

i=1

And N*' is the internal normal to the boundary 6Q , according to Green's formula, we obtain

J‘r(r,H)u(r,H,O)ds =0. (48)

Since the linear span of a system of functions {2_' y (r)Jim (6’)} is dense in L,(S) ([8]), we conclude

from (48) that u(r,0,0)=0, V(r,0) €S . Therefore, by the extremum principle for parabolic equation
6)[12] u=0 in Q.
It follows that u, (r,8,0) =v(r,0)=0, V(r,0)€ S .

Thus, we have arrived at the homogeneous mixed problem (41), (42), which, by virtue of Theorem 2,
has a trivial solution.

Consequently, the uniqueness of the solution to Problem 1 is proved.

The theorem is completely proved.

Since an explicit form of the solution to problem (41), (42) was obtained in [4], it is possible to write
an explicit representation for problem 1 as well.

The work was supported by the KazNPU science foundation (agreement No. 8 dated 05.01.2020)

C.A. Anpames, E. Ka3es

Maremaruka, (puzuka xsHe HH(YOPMATHKA HHCTHTYTHI,
Abati ateiagarel KazYITY, Amvarer, Kazakctau

BIP KJTACTAFBI A3FBIHIAJTAH KOII OJIIIEMAI THIIEPBOJIA-ITAPABOJIAJIBIK
TEHJAEYJEP YIINIH APAJTAC ECENNTEPAIH KOPPEKTLIIT'T

Anpatma. KCHICTIKTET 3IEKTPOMArHUTTIK JKA3BIKTHIH MATCMATHKAJIBIK MOJCIACPIH 3CPTTCTCHIC, JICKTPOMAr-
HHUTTIK MPOLIECCTIH HETi31 OHBIH KACHETTEPIMEH aHBIKTANAAEL Erep opra eTkiz0eiTiH 00ca, OHAA a3FBIHIAIFAH K6l
ONmIeMIl THICPOOATBIK TCHACYICPre Kememis. Erep me opra kem eTkisrimTi 00Jica, OHAA A3FBIHAAIFAH KOI
emmeMal mapaboIaTBIK TCHACYICPTS KSATIPLIAL.

CoHIBIKTAH, KYpACT opTajapaa (MBICAITBL, OTKI3CTIH OpPTaga e3r¢PMEN JCTIK) 3ACKTPOMATHHTTIK KA3BIKTHIK-
Tapabl 3¢PTTETCHAC 013 A3FBIHIANFAH KO 6IMCeM Il THICPOO0IAIBIK-TapadoIaIblK TCHACY ICPTS KEICMi3.

ConpiMeH Karap, ['aMHIIBTOH KaFMJACHIHA COMKEC KEHICTIKTETI cepmiMal MeMOpaHa TepOETICTEPiHIH a3FbIH-
JAIFAH KO eImeM Il TANepO0IaIbIK TCHACY ICPMCH MOACITBACY MYMKIH CKCHAITI OCTITii.

MaccaMeH TOATHIPBUTFAH OPTaAa JKBUIY TapaTy MPOICCIH 3CPTTCY A3FBIHIAIFAH KON OJMICMII MapadOoaTbIK
TCHJICY JIEPT€ AJIBII KEIC 1.

CoHbIMEH cepmiMAl MEMOpaHAAAFBI XKBULY TApaTy IPOIECIHIH MATEMATHKAJIBIK MOJCIIBACYIH 3€PTTCH OTHIPHIIL,
A3FBIHIAIFAH KOl enmieMal runepbosa-napadosanslk TeHACYIepre kememis. OChl KOCBIMITANAPAbl OKBIT YHPEHY
KE31HJE 3ePTTENTCH MACENCICPAIH MEIiMICPiH HAKTHI TYPAE KOPCETY KEPEKTIT1 Ty BIHAANIBL

— 34 ——
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ABFBIHIATFAH KOT 6IIIIEMAl THIICPOOTANBIK TCHACYJICP YIIiH aparac ecenTep OYFaH ACHIH KapaCTHIPBLIIBL.

ABFpIHIATFAH KNl enmieMal rumepdoa-napabosanblK TCHACYJEP YIIH MYHAAH €CENTEPIiH HAKTHI IIemrimi
TaOBIIMAFAHABIFBI OCIIT1IIL.

Maxkanaga OipMOHZAI MICHNMIUIIK KOPCETLITSH XKOHE Olp KJIACTaFbl a3FbIHAANFAH KOI eIImeMIl ruiepOoma-
mapaboIaTbIK TCHACYICP YIMIH apaaac SCeNTiH HAKTHI KIIACCHKAITBIK MICTIIMI KeITiPiATCH.

Tyiiin ce3aep: apamac ecem, KIACCHKANBIK MIemmiM, OipMoHII menmnmMaimik, beccems (DYHKUHACH, Cepanbi
(yHKUIHEATAP.

C.A. Anpames, E. Kaze3
WrctutyT Maremaruku, Qpuzuku u wHPopMaruku, KasHITY uv. Abas, Anmartst, Kazakctan

KOPPEKTHOCTb CMEIIAHHOM 3AJIAYH JJI1 OJJHOI'O KJIACCA .
BBIPOXKJAIOIIINXCA MHOTOMEPHBIX THITIEPBOJIO-TIAPABOJIMYECKHUX YPABHEHUHU

AHHOTaHI/Iﬂ. HSBGCTHO, UTO IOpPpH MATCMATHICCKOM MOACTHUPOBAHHUU JJICKTPOMATHHTHBIX nojcH B poc-
TPAHCTBE, XapakTep HICKTPOMATHATHOTO MPOLECCa ONMPEaeAeTCa CBOUCTBAMHE Cpeabl. Ecinu cpena HempoBoaAImas,
TO TOIYYIACM BBIPOKIAFOIAXCA MHOTOMCPHBIC THICPOOMICCKHe ypaBHCHuA. ECim ke cpema odmamaet O0mbImon
IPOBOAUMOCTBIO, TO MPUXOAUM K BBIPOKIAIOITUMCA MHOTOMCPHBIM r[apa6om/mecm/IM YPaBHCHHUAM.

Cre10BaTeIIbHO, AHATA3 3JICKTPOMATHATHBIX MOJICH B CIIOKHBIX CpefaxX (HAMPUMEP, ©CITH MPOBOIUMOCTD CPEIBI
MEHSETCS) CBOATCA K BHIPOKIAIOIIUMCS MHOTOMEPHBIM THIIEPOO0IIO- MApabOIMYECKIM YPABHCHHUSIM.

UsBecTHO, Takke 4YTO KOJNCOAHHS YOPYTHX MEMOPAaH B MPOCTPAHCTBE MO NPHHOUNY | aMHIBTOHA MOYKHO
MOACTHPOBATH BRIPOKIAOIMIUMHUCA MHOTOMCPHBIMHA FI/IHep6OJ'II/I‘{eCKI/IMI/I YPaBHCHHUAMHU.

UsyueHne mponecca pacmpocTpaHSHHA TEIUIA B CPEAC, 3ANOJHCHHOW MACCOH, MPHBOJAT K BBIPOIKIAFOIIHMCS
MHOTOMCPHBIM r[apa6om/mec1<1/IM YPABHCHHUAM.

CraenoBaTenbHO, HCCIEAYSI MAaTEMATHYECKOE MOJCIHPOBAHKE ITPOIIECCA PACIIPOCTPAHCHUS TEIUIa B KOJIEOImo-
IIEXCA YIPYTHX MEMOPAHAX, TAKKE IPUXOIMM K BBIPOKIAIOIIAMCS MHOTOMEPHBIM THIIEPOOJIO- MapadoMIecKuM
ypaBHeHHAM. [IpH M3YUCHHH STHX NMPHIOKCHHHA, BOZHHKACT HCOOXOAMMOCTH MOJYUCHHSA SBHOTO MPCACTABICHHA
PEIICHUI HCCIEAYEMBIX 3a0a4.

CMCHIaHHBIC 321a4H I BBIPOKIAFOIINXCS MHOTOMCPHBIX THICPOOTHICCKHX VPABHCHHH PAHES PACCMOTPCHBL.

HackoJIbko H3BECTHO, 3TH 33Ja4H A BBIPOKIAFOIIUXCA MHOTOMEPHBIX THIICPOO0JIO- MapabOIHICCKHX YPaBHE-
HHUU HE HU3YUCHBIL.

B nanno# paboTe mOKa3aHA OJHO3HAYHASA PA3PCIIMMOCTD W TOJYYCH SBHBIH BHJ KJIACCHYSCKOTO PCLICHUA
CMCIIAHHOH 33a4H A5 OTHOTO KJIACCA BRIPOKIAFOMIAXCS MHOTOMEPHBIX THIIEPOOII0- HApabOIHISCKHX YPABHCHHIH.

Kirouepbie c/oBa: CMCIIAHHAS 330a4a, KJIACCHUCCKOS PEIICHHS, OJHO3HAYHAS Pa3peIIMMOCTb, (YHKIMH
Beccens, cepuieckue GyHKIUH.
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