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Substituting (2) into equation (3) we obtain the basic equation, which has the form

T o) T oL o A
ar? T ou)lor | r2p (8o u () or? ( )

Let the boundary conditions for this problem have the form
Oy = [;n(7) cos(mB)forr = 1 )
Oz = Oforr = 1y (andry > 1) 6)

In addition to the boundary conditions, it is necessary to specify initial conditions that are zero in our
problem, i.c.

or

Jt =0

ul‘rzO =0 (7

Since a linear problem is considered, it is advisable to use the one-sided Laplace transform over
dimensionless time to solve it.
We apply the Laplace transform with respect to t to equation (4) and obtain

3% 1 ui() dug wa(Md?uy _ p(Mb? 5
ar? [r ul(r)] or | Pu36% | @ P 0 ®)

The solution to equation (8) is sought in the form
uy = T(r) cos(inf) &)
Flat
Uy = fooo u(r,0,t) e Pidr (10)
Then equation (8) takes the form

92T (1) [1 u{(r)] BT(T)_[mzuz(r) p(r)b?

oz I T el er ) | ()

p?|T(r) =0 (11)
In the future, we will assume that the inhomogeneity of the medium has the form
1 (1) = 7%t (1) = paor¥; p(r) = por? (12)
Moreover,b? = % ; &, B,y — constants.
Then equation (11) takes the form
r2T"(r) + r(1 + )T’ (a) — (m?rf~%y% 4+ p?rY"**)T(r) = 0 (13)

n
Herey? = =22
H1o

Supposethaty —a + 2 > 0 anda = f

The general solution of equation (13) in the case under consideration is equal to

y—a+2

or©z ) (14)

HereKy(z) andl, (z) - are the Bessel function of the imaginary argument, and

y =——+a? + 4y2m? (15)
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The constants C; andC,are determined from the boundary conditions (13) and (14)

Fro @ prily (p7) = [ys +5] 6,05
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Where S = 17

Consequently

10) = 22 (K, DL bty (p3) = s + 5] (02)] + 1 (0 D) [preka (v3) -

] ()b prs ()= (B) s+ 5l [ 20 (02) = b + 3 (0 )] - o1 () -
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In the general case, it is very difficult to invert expression (18) with respect to p.
Expression (18) can be inverted for discrete values of the index, i.e. when

v=n+% (19)

where n is an integer, then the Bessel functions are elementary.
For example, forn = 0
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_Ii(E)[ 2 Hp?K—%<p?1>+[ 2 ]K§<p?1>] (20)
Given that

T o_, N (n+ k)

Kon)@) = \/%e ;k! (n— k) (22)F

O (DR K)! i, (B!
i(’”(%))(z)_ ¢ ;k!(n—k)!(ZZ)"Jr(_l) e ;k!(n—k)!(ZZ)k

or K, (1)(2) = \Ee—ni@)(z) = ei%z 21)
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We rewrite expression (21) as

fmo(p) _ytarz Lr5-r) o 2r5-r)
T(r) =  re—— + }(22)
[es 1= _ 51— 1)] £49) [es(rl 1) _ B0~ 1)] 2 0)
Or
f (p) s expl—¢1(Mp] _ expl-¢,(r)p]
T( )_ =2 Zk 0{ y+ix+2 _y+fx+2 } (23)
4 4
Where
1
011 = [(° = D +2k07 - D5
92 (r) = [-(r° — 1) + 2k — 1] (24)
Consider the expression
exp[—¢,(r)p] exp[—¢,(r)p] y+a+2 1
T(T‘) = +y+ix+2 = pl 2](20—0(_ )m_ (25)
4
We denote
Eqp = eXp[—;;;l(r)p] (26)
_exp[—¢,(r)p]
1m = T
and get
€ — (M)
Ejq = fEmdfiEu: fl—,lEmdf
@1(r) @1(r)
_ e (E-ei() _ e (E-ei()
Eis = fwl(r) 2'1 E1dE; ..., Eym = fwl(r) (m—ll)! E1odg

Then the expression (25) takes the form

Tl(T) — By _wfoo Eyodé +y+zx+2foo (§-p1() Eyodé — y+zx+2f (¢- (pl(r))E odE +

o 4 () 4 () 1! 4 Yo 2

(-2 fz(r)%%ﬁ =Eio = ol ~refeo)

(e2)’ (5“"21!(”)2 b o ST e @7)
or
T1(r) = Eyo — Y+Z+2 f(pl(r) € e (p(r))E 0d¢ (28)
Ty(r) = SELR = SRl ye (@ ym (29)
We denote '

E, = M (30)
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_expl[—a,(r)p]

2m — pmtl
As previously put
o0 )
E21 f(p @) Ezodf E22 f(pz(T) i (i? - )EZ df
_ (0 E-e()? _(® G-er)™!
E23 - f(pz(r)+E20d§ 2m — f(pz(r)WEZOdg (31)
Consequently

y+a+2 o y+a+2 o (E—pr)"
—T,(r) = Ey T f(pl(r)Ezodf + . +( ) f(pz(r)—( (1121—13! E;0dé = Epp +

m-—1
aLak ftp (r){l Tt (V"‘“"‘Z) (E <P2(T)) + -+ JEod&or

4 (m-1)!
_ yrat2 co LR g, (1)
1) = Exo +—— . in P Eod§ (32)
Thus, the expression for T takes the form:
- _yra+z 2 2
T(T)—fpog) Zk o(—1)* {E1o — y+Z+ f(pl(r) exp[— y+a+ —— (= @1(r)]E2d + Eo +
, e i (i 2P Exadt (33)

Inverting the expression in P, we obtain

T =SV SR (D [y (o = T [ 1y eXP[= 5 (€ = 01 (M) Erodg 1 fin (T —

2)dz + Y _o(= D" fo [E20 + #L‘:(T) eXp[y o (€ — =2 (")]E30dE] fin (T — 2)dz} (34)

where
Eip = ]O(T - (P1(T))J Ey = ]O(T - (Pz(r))

_ [st=@*-1)7] . _ STH(@S-1)
k= [ 2(5-1) ]’ ky =1 2(5-1) ] (35)
Knowing T, we can determine(r, 8, T)
u(r,8,7) = T(r,r)cos(mh) (36)

Similarly, we can obtain expressions for the stress g,,- and 0,4

T =T (S DMLy £ - 2B — L f(r = 91 0)] - o DLy -
HZRAE — 2 f (T — 9y ()] (37)
si:(ZrZe) = m,uzor(_ﬁia%)u(r, 6,7) (3%)

Formulas (34), (36), (37), (38) give an exact solution to the problem, taking into account the entire
complex wave picture.

In the calculation, it was assumed that the points of the inner surface of the cylindrical layer are
rigidly fixed.













