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EMBEDDABILITY OF m-DEGREES INTO EQUIVALENCE
RELATIONS IN THE ERSHOV HIERARCHY

Abstract. The paper is devoted to the study of equivalence relations in the hierarchy of Ershov. An equivalence
relation R on w is computably reducible to an equivalence relation S if there exists a computable function f(x) such
that for any xand y, the conditions xRy and f(x)Sf(y) are equivalent. In this paper we construct isomorphic
embeddings of semilattices of m-degrees into partial orders of equivalence relations in the hierarchy of Ershov with
respect to computable reducibility.
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A set A 1s m-reducible toa set B (denoted by A <,,, B) if there is a computable function f such that
for any x € w the conditions x € A and f(x) € B are equivalent. Such a function f is called a reduction
function. A set A is 1-reducible to a set B (denoted by A <, B) if A <,,, B and the corresponding
reduction function is injective. A formula A =,, B means that A <,,, Band B <,, A. The m-degree of a
set A is denoted by d(A4), ic. d(A) = {B: A =,, B}. We use the same notation <,, to denote a natural
ordering on the set of m-degrees:

d(A) <,, d(B) 5 A <,, B.

A vpartial order L%, = ({d(X): X is a recursively enumerable set and X # @, w},<,,,) is an upper
semilattice and an ideal in the upper semilattice of all m-degrees. The supremum operation in L%, is
induced by the join of sets:

AD®B=s{2x:x € A}U{2x + 1:x € B}.

It is well-known that L2, contains the greatest and the least elements. For further definitions and
preliminaries on m-reducibility, we refer the reader to the monographs [1, 2].

Definition ([6]). A set A belongs to the class X! in the hierarchy of Ershov if there are computable
functions f(x, t) and h(x, t) such that for any x, t € w, the following conditions hold:

(1) A(x) = lim; f(x,s) and f(x,0) = 0;

) h(x,0) =n&h(x,t+1) < h(x,t);

B)fle,t+1) = flx,t) = h(x,t+1) <h(xt).

If a pair of functions (f,h) satisfies the conditions above, then we say that {f,h) is a X,'-
approximation of the set A. A set A lies in the class /7,," in the hierarchy of Ershov if the complement of
A belongs to the class X, . A set from the class £, (IT,,!) is also called a X, -set (IT,, *-set). X7 '-sets are
known as computably enumerable sets. A detailed exposition of results on these sets can be found in [3, 4,
5,6].
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The classes £, ' and I7,,! are closed downwards under m-reducibility. It is known [3] that each of the
classes contains a universal set. Moreover, the partial orders (2,21, Sm) and (IT,,',<,,) are upper
semilattices.

Proposition 1. A sct A belongs to X;;* if and only if there is a computable function h(x, t) such that
for any x, t € w, the following holds:

(1) A(x) = rest(limg h(x,s), 2);

(2) h(x,0) =0 &h(x,t) < h(x, t + D& h(x,t) < n.

Proposition 2. A set A belongs to IT,,* if and only if there is a computable function h(x, t) such that
for any x, t € w, the following holds:

() A(x) = @(rest(limS h(x,s), 2));

(2) h(x,0) =0 &h(x,t) < h(x,t + D& h(x,t) < n.

We assume that all considered sets and equivalence relations are defined on the domain w. For a non-
zero n € w, 1d,, is a computable equivalence relation which satisfies the following: xId,,y if and only if x
and y are equivalent modulo n. By Id we denote the identity equivalence relation. For an equivalence
relation Eand a € w, [a]g denotes the E-equivalence class of the element a.

Definition. An equivalence relation E on w is called aX;, “equivalence relation (a TI," equivalence
relation) if the set E is a T, *-set (IT, *-set).

An equivalence relation R is computably reducible to an equivalence relation Q (denoted by R <, Q)
if there is a computable function f such that for any x, y € w, the condition (x,y) € R holds if and only if
( f),f (y)) € Q; ic. there is an algorithm which transforms different R-equivalence classes into
different Q-equivalence classes. Equivalence relations R and Q and equivalent if each of them is reducible
to the other one. The family of all equivalence relations which are equivalent to R is called the degree of
an equivalence relation R.

It is clear that an equivalence relation E satisfies E <. Id if and only if E =, 1d,, for some n € w.

Definition (A. Sorbi and U. Andrews). An equivalence relation E is dark if E is incomparable with
the identity equivalence relation under the reducibility <.

For an arbitrary c.e. set A, let Ry = {(x,y):x =y v {x,y} € A}.

Proposition ([11]). Let A, B be non-empty c.¢. sets.

1) R4is computable if and only if A is computable.

2) A <, Bimpliesthat R, <. Rp.

3) If Ry <. Rg,then A <,,, B.

The proposition implies that c.e. 1-degrees are isomorphically embeddable into the structure of c.e.
equivalence relations. It is well-known that ¢.e. 1-degrees do not form a semilattice. Hence, the structure
of equivalence relations under computable reducibility is also not a semilattice.

In this work we study embeddings of semilattices of m-degrees into structures of equivalences in the
hierarchy of Ershov. Results on embeddings of ¢.¢. m-degrees into Rogers semilattices can be found in [7,
8, 9, 10]. For an embedding of c.¢. 1-degrees into structures of equivalence relations, the reader is referred
to [11, 12].

Embedding of semilattices of m-degrees into structures of equivalence relations in the
hierarchy of Ershov.

Theorem 1. For anyn >0, the semilam’ce(Z,;l, Sm)is isomorphically embeddable into the
structure(T, requivalence relations,<.).

Proof. We consider the following operator: for an arbitrary set X, we set

TX) = {(x,y): {x,ylecXvixy}c Y}.

It is clear that for any set X, the set T(X) is an equivalence relation. We prove that the map X — T'(X)
induces an isomorphic embedding from the upper semilattice (X', <,,) into the structure (I,
equivalence relations, <.). We also show that our estimate of the level in the hierarchy of Ershov is sharp.
In order to obtain this, we prove the following lemmas.
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Lemma1.If X € =%, then T(X) € I}
Proof of Lemma 1. Suppose that a pair of functions (fy, hy) is a £, *-approximation of the set X. We
build an approximation of the set T (X): for any x,y € w, set

f((xJ’); t) = |fX(x; t) +fX(3’» t) - 1|;
h((x, V), t) = hy(x, t) + hy(y, 0).

We prove that the pair (f, h) is a I, -approximation of the set T(X).

D f(C9),0) = Ifx(x,0) + fx(y,0) — 1] = 1; and

limg f(Cx,),5) = [limg fi (x,8) +limg fx(v,8) — 1] = [X(0) + X () — 1],

The latter equation implies the following: T(X)(x,y) = 1 if and only if X(x) = X(y). Therefore,
T(X)(x,y) = 1 ifand only if lim, f((x,¥),s) = 1.

2) h((x, V), 0) = hyx(x,0) + hy(y,0) =n+n=2n; and h((x, y),t+ 1) =hy(x,t+1)+
hy(y,t+1) < hy(x,t) + hx (v, t) = h(x,y).

3) Suppose that f((x,y),t+1) # f((x,y),t). Thus, either fy(x,t+1) # fx(x,t), or fy(y,t+
1) # f(y,t). Hence, either hy(x, t + 1) < hy(x,t), or hy(y,t + 1) < hy(y,t). In turn, this means that
R((x,¥), 6+ 1) = hy(x,t + 1) + hy(y, £ + 1) < hy(x, t) + hy (v, ©) = h((x,¥),t).

Therefore, the pair of functions {f, h) is a 15, -approximation of the set T(X). Lemma 1 is proved.

Lemma 2. If F <. T(X) fora X, -set X, then F =, T(Y) for some X, -set Y.

Proof of Lemma 2. Suppose that for an arbitrary equivalence relation F, we have F <. T(X) via a
function f. Then the equivalence relation T(X) contains at most two equivalence classes. Hence, the
equivalence relation F also contains at most two classes. Therefore, if ¥ = f~1(X), then F = T(Y).
Lemma 2 is proved.

Lemma 3. X <,,, Yifand only if T(X) <, T(Y).

Proof of Lemma 3. Both reductions can be realized by the same function. Lemma 3 is proved.

Lemma 4. For any I, -set A, there is a X, *-set B such that 4 <,,, T(B).

Proof of Lemma 4. Suppose that a pair of functions (fy, h) is a Il -approximation of a set A.
Moreover, let hy be the function from Proposition 2. We build aZ;,* approximation of a set B as follows:

1,rest(hs(x, t),4) = 2;
0, otherwise.
0,rest(h,(x,t),4) = 0;
1, otherwise.

fo2x0) = {
f2(2x +1,0) ={

{ hg(x,0) = n;
hg(x,t +1) = hg(x, ) — |fp(x, t + 1) — fp(x, t)|.

It is not difficult to see that a pair of functions {(fz, hg) is a X, -approximation of the set B.
Furthermore, it is not hard to check that the reduction A <, T(B) can be realized by the function
f(x) = (2x,2x + 1). Lemma 4 is proved.

Corollary 1. I X is an m-complete X,,*-set, then T (X) is an m-complete 15 r-set.

Proof. Let X be an m-completeX;, *-set. We prove that any IT;,-set Asatisfies A <,,, T(X). The proof
of the theorem implies that there is a X, -set ¥ such that 4 <,, T(Y). It is clear that T(Y) <. T(X).
Suppose that that the reduction T(Y) <. T(X) is realized by a function f. then the reduction
T(Y) <,,, T(X) is realized by the function

h((x, ) = (f), fF(0).

Since m-reducibility is transitive, we have A <, T(X).
Corollary 2. For any non-computable set X, the equivalence relation T (X) is dark.
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Corollary 3. The semilattice of computably enumerable m-degrees is isomorphically embeddable
into the structure (I1;* equivalence relations, <.).

Corollaries 2 and 3 areevident.

Question. Is it possible to isomorphically embed the semilattice of c.e. m-degrees into the structure
of c.e. equivalence relations?
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B.C. Kaimyp3saes', HA. Baxenon®

"Kasaxckuit HAMOHATBHBIH YHHBEPCHTET HM. amb-Dapabu, Amvarsr, Kaszaxcran;
2I/IHCTHTyT maremaruka uM. C.JI. Cobdomesa CO PAH, Hosocubupck, Poccus.

O BJOXXHUMOCTH - CTENIEHEN B OTHOIEHUAYKBAUBAJIEHTHOCTUB HEPAPXUHU EPIIIOBA

Annoramus. Padota mocBAmMECHA HCCACAOBAHHIO OTHOIICHWH SKBHBAJICHTHOCTH B mepapxuu Eprmmosa. OtHO-
[ICHUC SKBUBAJCHTHOCTH RHA (WBBIMHUCIMMO CBOJUTCS K OTHOLICHHIO 3KBHBAJICHTHOCTH S, €CIH CYLICCTBYET BbI-
yucaumas pyuxmus f(x), Takas 4o, i MO0k xu y yeiaosus xRyu f(x)Sf(y)skxsusaneurusl. B nanuoi padore
CTPOATCS M30MOP(HBIC BIOKCHHUS TOIYPEIIETOK ~CTCTIICHEH B YACTHYHBIC IMTOPSIKA OTHOLICHUH SKBUBAICHTHOCTH B
nepapxuu Epnrosa OTHOCHTEIBHO BHIMHCIMMOH CBOAUMOCTH.

KimoueBpie ciioBa. OTHOIECHHS SKBHBAJICHTHOCTH, BEIMUCIMMAS CBOANMOCTD, Hepapxust Epmosa, BEMUCIHMO
TIEPEUUCIMMBIC MHOKECTBA, IOJTyPEIICTKA BHIMHUCIUMO NEPEUYHUCIMMBIX 171-CTCICHEH.

B.C. Kaamypsaes', H.A. Baxkenon’

'anp-Dapabu aTemars Kasak yrTeik yEEBEpcHTeTi, Amvatsr, Kasaxcran;
*PFA CB C.JI. Co60icB aBThIHIAFbI MATEMATHKA HHCTHTYThI, HoBoCHOHpCK, Peceit.

EPIIIOB HEPAPXUSICBIHJA m-AEHTEMIEPAIH JKBUBAJTEHTTIK KATEIHACTAPFA
EHT'I3Y.JIEPT TYPAJIBI

Annortamus. byn Makana EpmoB mepapXusachHAAFbI SKBUBANCHTTIK KATBIHACTAPABI 3EPTTEYTE OAFbIITATFAH.
@ KUBIHBIHIAAHBIKTAJFAHR SKBHBAJICHTTIK KATHIHACH S SKBHBAJCHTTIK KATHIHACHIHA CCCNITCIIMIl KOIIIpiieai acm
aTalMBI3, €TEP Ke3 KEJITCH X JKOHE Y aNeMeHTTepi yuin xRy xone f(x)Sf (y)mapTrapblokBUBAICHT 0OIATHIH A
f(x)ecentenimai dyukumsice TadbuTaThiH Gonca. By makanana Epmios wepapXusChIHAAFsl m-ICHIEHIEpai ecen-
TENIMI Kemmipyiepre OAHIAHBICTHI 3KBUBAJICHTTIK KAaTBIHACTAPBIH XKAPTIal PEeTiHE M30MOP(THI CHIi3yIePl KYpHI-
Ta7pL.

Tipek co3nep. DKBHBAJNCTTIK KaTHIHACTAP, ECENTETIMAL Keipyep, EpIios nepapXuscel, peKypCHB CaHATIBIMIbI
SKUBIHIAP, PEKYPCHB CAHAIBIMIBI M-ICHICHIICPAIH KaTPBHITOPHL




