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NUMERICAL ANALYSIS OF THE CHARACTER OF EFFLUX
OF HIGHLY VISCOUS FLUIDS FROM THE "NARROW CHANNEL”

Abstract. Based on the mathematical model of the efflux of igneous materials we have formulated a
mathematical problem of the efflux of high-viscosity fluids from the so-called "narrow channel”. A new approach to
the solution of a quasi linear parabolic equation with a modified domain of integration is proposed. An algorithm and
program for solving the problem have been developed and a numerical analysis of a special case has been carried
out. The outcome of the solution has been presented in the form of graphs of the sought-for function which
determines the free surface of the flown out viscous fluid.

Key words: igneous substance, high-viscosity fluid, quasi-linear parabolic equation, algorithm and program for
solving the problem.

1 Introduction. One ofthe problems arising in the model studies of tectonic processes in the Earth's
interior is a quantitative analysis of the movements of igneous materials rising from its lower layers. This
article is devoted to a numerical analysis of the effluxprocess of high-viscosity fluidsfrom the so-called
"narrow channel” with the help of the developed computer program. The outcome of this work is of
theoretical and practical interest for researchers oftectonic processes in the Earth's interior.

Statement of the problem. According to one of the hypotheses on the processes taking place in the
upper mantle, it is believed that the heated igneous substancesrise up the so-called "narrow channels”
which leads to a hydrodynamic instability due to the interaction with the overlying denser asthenosphere
substances [1-4]. For model studies of this process it is assumed that the movement of igneous substances
is regarded as movement of a highly viscous fluid at very low Reynolds numbers [5-8]. A mathematical
model of the process was obtained and published by the authors in article [9]. On the basis of this mathe-
matical model a mathematical problem has been formulatedin which it is required to develop a computer
program to solve the resulting mathematical problem and carry out a numerical experiment to analyzethe
efflux process of high-viscosity fluidfrom the "narrow channel” [10].

Formulation of the mathematical problem. Itis required to solve the following two equations:

5£ =ER"'d ,,3 ,5£) + fy(» ~ if xe [-1,1],J (D
dt 3 dx dx [0, if xX£[-1,1], J
t
Jpp()E(x,t) edx :Pfxy(x,t) «dxdt, 2
for the initial conditions
t=0 %(x,0)=0p()=r, (3)

andthe boundary conditions
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X =0, =0, (4)
dx

x=p(t), £[p(t),t]=0. (5)
This problem is solved in the following domain with variable boundaries:

{0<x<p(t),0<t<1}

The problem (1) - (5) is solved to determine two unknown functions: £(x,t) andp (t).

The physical nature of these functions wasdescribed in article [3], and it is given here.
Function £ (x, t) determines the boundary of the rising high-viscosity fluid, function p (t) determines the

change ofthe intersection point between the boundary and the horizontal axis where £(x,t) =0 .

Here, the equation (1) is a nonhomogeneous quasi-linear parabolic equation, and the equation (2) is
an integral equation. All variables and parameters in the equations, initial and boundary conditions are
dimensionless quantities.

2. Method.

The essence of the method of solving the problem. It is obvious that the formulated mathematical
problem (1) - (5) can not be solved analytically, so we have to use a numerical method for the solution. To
solve the quasi-linear parabolic equation (1) we can use the method of finite difference. For the numerical
solution of the equation (1), the function must be prescribedwhich is in its right hand sidey (x,t). This
function can be prescribed, it determines the velocity of the fluid from the "narrow channel”. If it is
defined, the right side ofthe equation (2) can also be calculated.

Let the right-hand side ofthe equation (2) be expressed as the following function:

S(t):%go'y(x,a)dxda . (6)
Then the equation (2) is written as follows:
r(g)(th(x, t)dx = S (t). )

Here we have two problems:

- Firstly, the domain of integration of the equation (1) is a variable, therefore, it needs to be taken into
account when using the finite difference method;

- Secondly, in the equation (7), the upper limit of the integral is an unknown function p (t) while its

right-hand side can be calculated ifthis function y (x, t) is prescribed.

To solve these problems we propose a new approach the essence of which is given here. For a certain
moment of time t it is believed that the value of the function p(t) is known. Then we solve the equation
(1) using the finite difference method for a certain short period oftime [t,t + At].. Here At- quite a small
value.

So, for the fixed value p(t) we numerically solve the equation (1) in the domain
{0<x<p(t), [tt+At]}

Computational scheme for solving differential equations. Let us now consider a problem of
equations in mathematical physics where a differential partial equation (1) with the initial conditions (3)
and the boundary conditions (4,5) is solved. Equation (1) is quasi-linear, so to solve this equation a finite
difference method is selected. "Currently, the finite difference method is the only method to effectively
solve quasilinear equations” [11].

According to the rules ofthe finite difference method we first select partition steps for corresponding
arguments: for variable t -t, and for variablex - h. In the future we consider discrete values of all variables
included in the original equation (1), with the initial conditions (3) and the boundary conditions (4,5). We
introduce the following notations:
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Ui = (xttj),xt=he(i-1),tj=te,i=1,2,3,..,n+1j =1,2.3,.,m;

n=p /h, m=1/t, pj=p(t]). ®)

One can write the following formulas which replace the derivatives of the sought-for function with
finite difference equations:

uij+i ~ uij
- 9
dt t ®)

Use ofthis formulato replace the first time derivative results in implicit computational scheme [11].

a ((e3dr\ 1 {(ud+1+ui+ij+i\3 f \ fui-i7+#1 + Uij+i\z . L
irJ ™K T ") = )-(— 2Z ) .(illj+| ui-1j+1

(10)\
In the formula (10) we use the following substitutions:

£(x ,tj+1) - U +1+Ui-1J41;

E(x LY - 1HU D

d™(x,,td+) - uj#- U-1j#.
dx h

dA (xi+l tj+l) —UiHj+l - Ui+ ;
dx h

The formula available in the right-hand side of equation (1) is replaced by the following expression,
the values of which are considered to be known:

yy =y (x ,ty). (11)
Substitution of formulas (9) - (11) into equation (1) allows to obtain the following formula for the
unknown discrete valuesu”™- of the sought-for function:

il — | ER-T Uulj+l +Ui+lj+1\ 3 y  JUj-ij+i +ulj+\ 3,
uij+l ~ uij + 3f2 H 2 [ - \WJ+1j+1 uij+l) A 2 [ - \uij+l ui-lj+1)\ 2

(yy,ecnm 1<i <k,
(0,ecnn k +1 <i <n.
(12)
Here k = - - number of points where the function y(x,t) is different from zero:i =0,1,2,..., n- 1,

j = 1,2,...,m. Itshould be noted that the parametem is a variable, depending on timet. Its value can be
fixed; it may be quite large. Then the problem is solved in the initial moments of time and for that part of
the interval, where x >p (t) .

Based on the initial conditions (3) and taking into account the introduced notations it will be rewritten
in the following discrete form:

uid=0, i=1,2.3,.,n. (13)

The boundary conditions (4,5) determine the values of the sought-for function at the boundaries of
the domain of integration, and will be written in the form ofthe following discrete formulas:

Uoj =V, Wy=0, j=1,2,3,.,m. (14)
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So, instead of a quasi-linear partial differential equation (1), with initial (3) and boundary (4,5)
conditions, we obtain a system of nonlinear algebraic equations (12) - (14) with respect to the discrete
values of the sought-for function Uij . The solution to this system of algebraic equations allows usto obtain
a numerical solution to the problem stated in this section.

Note that this system of equations is performed for a fixed value of variable t orJ.

Formula (12) is a system of nonlinear algebraic equations which requires the iteration method [11] to
solve it.

To apply the iteration method for solving the system of equations it is expedient to transform it and
bring it to the following standard form:

Ar z .1- Ctmz .+ Ai+tlmzi+1= -Ft. (15)

where i = 1,2, ...,n-1; and, as noted above, the parametern may be a variable value.
In this formula (15), the following notations are introduced:

Wi-lj+1  z i~ uijH  zi,ui+lj+l  zi+

At= — FZ (z ~1+z 93;

)3, (16)

ry , if0<i<k,
C=1+Ai+ A+, FR=-Zi-\ A
10, ifk+1<i<n;

This system of equations (15) is a system of linear algebraic equations for the discrete values of the
sought-for function for the new iteration, and its coefficients are determined by the values of the same
function in the previous iteration. The peculiarity of the system matrix (16) allows us to use the well-
known sweep method to solve this matrix[11].

The numerical values of the second unknown function in this problem p(t) is determined by the
recurrence formula (28), and, each time after each iteration at that.

Sweep method of solving a system of algebraic equations. In each iteration for solving a system of
algebraic equations (15) the sweep method is used. According to this method the solution of equations
(15) is sought in the following form:

zi= aitlmz i+ + A+l (17)
Here atand”-sweep coefficients, which are determined by the recurrence formulas:

a = °
M 1+4+ +4.+ (1-a)

PI" 1+4 +1+4 +(1-a)

Thus, for any point in time the values (z,,i =1,2,3,..., n) are determined of the sought-for function

by the sweep method.
After determining these values of function {z,} for a particular value t (or j) we can be determine

the value ofthe function py =p(ty).

Use of the iterations method. All of the above formulas are for one iteration, i.e. all calculations
related to the formulas above occur within a single iteration. Now we need to determine the formula to
implement the iterative process itself.

Let’s first consider the application of an iterative process for solving a system of algebraic equations
(12). To describe the iterative process that takes place during solving this problem, we must make a
notation which should show the values of the sought-for parameters in the two adjacent iterations: in the
previous and current one. Here, the following notations are introduced:
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z1, - The value of the sought-for function in the previous iteration;
zi - The value of the same function in the current iteration.

Then the formula (2.38), determining the coefficients of the system of algebraic equations (2.37) will
be written in the following form:

A.=a. (™7™ )3 A+l =a-e (Z+2Z(+D)3

(19)
Fi= z1li+ jy-+, if0- |- k
[0,if kK +1< i <n;
ER T 1 p =
where a= — e—-constantvalue, Kk = —, n =—.
3 h2 h h

Use of the iterations method requires verification after each iteration for the accuracy of the
results. To verify for the accuracy of the calculations and the ending of the iterative process usually this
condition is used:

max |z{- z1| |<s for 1<i<n. (20)

In this condition (20) s >0 is considered an anticipatorily prescribed small number; it determines
the accuracy ofthe calculations, therefore, the accuracy of the solution. After this condition is attained the
iterative process terminates, and transition to the next value of parameter j or moment in time t is
implemented.

Consider a formula that determines the change in the right (and left) border of the domain:

2+(S4-8,)
o L (2D
whereJ =0,1,2,..., m,
SI=\}TIOy( t)dxdt (22)

Ifthe integrandy (-, t) is prescribed then calculation of the integral (22) is not difficult. We can use

one ofthe numerical integration methods.

At the initial time, the value ofthe function p(t) is determined, it is equal tor. Its following values are
determined by the recurrence formula (21). Here there is a condition (2), which must be the condition
forcompleti on ofthe iterative process.

So, all the formulas for determining the discrete values of the sought-for functions g(x,t) and

p(t) have been determined. The values ofthe first of them are marked u- (orz, ), and the second value p-.

3. Algorithmic implementation.

The algorithm for solving the problem. The main component of a computer model of any problem
is the software. Therefore, at first a program for the numerical solution of the problem should be
developed. To develop a program an algorithm for solving this problem should be drawn up.

Consider an algorithm for solving the problem, which is being developed on the basis of the
computational scheme proposed in the previous section of this paper. The algorithm of the proposed
computational process will have the following stages:

Stage 1 Input the initial values of the sought-for function z, for moment of time t= 0 i.e. whenJ =0
(zero iteration); here we assign to the sought-for functions p(t) nz = £(x, t) their initial values: p(0) = %
z, =0,,i=0,1,2,..., n. Here the following option is possible when it is assumed that the number of
subdivision points nis set. Then step h along the coordinate x will be determined from the formula

h = p(t) foreachtime pointt We can use another option when h is constant, and the number of points
n
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of subdivision of the variables interval [0,p(t)] will be determined by the formula n =p h ) . Here we

use the initial conditions of the problem (2.35). Simple cycle for parameter (cycle counter) i will be used
here. Also, here in this cycle, the argument x values are calculated according to the formula x, =i *h,
i=0,1,2,..., n

Stage 2. Onset f the cycle in parameterJ i.e. with respectto time t

Stage 3. Onset of the iterative process. To set up the iterative process we consider two values of the
sought-for functions for one and the same time point and for one and the same point along variable x. One
value is considered to be computed in the previous iteration z1i and another value zi computed in the
current iteration. Before performing each iteration, the computed value of the function in the previous
iteration will be considered z1,,and the new computed value zt. Therefore, before performing a new

iteration we assign the values obtained of the function zi to the variables z1li. This assigning process is
carried out as a cycle in parameter i according to the formulazl, = zt,i =1,2,..., n.

Stage 4. Here coefficient values A,,F, of the system of algebraic equations (15) according to the
formulas (16) must be computed. The computation of these formulas will be carried out in the form of a
cycle in parameter i.

Stage 5. Direct sweep. In the beginning the first sweep coefficients al and/, are computed
according to the formulas:al =1 [ = 0.Andthen, according to the recurrence formulas (18) the other
sweep coefficients a ,and [ are computed. These computations are performed with the help of the cycle
in parameter i =1,2,3,..., n-1.

Stage 6. Reverse sweep. At first the sought-for function is assigned a value on the right boundary i.e.
formulazn = 0 is performed. Then, according to the formula (17) the values of the sought-for function for

the rest of the points are determined i.e. fori=n- 1, n- 2,...,1. This is done using the cycle in
parameter i.

Stage 7. Verification of the condition of accuracy (20). For this purpose we consider the maximum
absolute value from the difference of values of the sought-for function for two iterations. To determine
this value we first use the cycle computes the absolute difference between these values according to the
formula:

Yazr-z1J L, ="A ..~ n.
As a result we will get an array of positive numbers {y} .To determine the maximum element

max{y} in this array a cycle is composed whose parameter (counter) is i. After this we make a
comparison of max{y} with a predetermined small number of s> 0 .If the condition of accuracy

max{y } < sis not fulfilled then the iterative process continues. For this purpose transition to Stage 3 is

made. If this condition of accuracy is satisfied, then the iterative process is completed for a given value J
and then we move to the next value of parameterJ i.e. to the new value t
Stage 8. Before moving to the next stage in parameterJ (to Stage 2) first value n is computed. And
for this purpose a new value ofthe functionp (t) is determined. To compute the new value ofthis function
this formula is used:
2¢(S+1-S))

J =p, + 1 ) 23
p . (23)

Next, the value ofn is determined. To determine the value ofthis parameter equation (2) is used. Use
ofthis equality is possible when velocity ofthe fluid from the channel is prescribed.

Stage 9. Displaying the results of solving the problem. We print out the values ofthe elements of the
following sets:
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-{z,},i=1,2,..., n,forany time pointt (orj );

-{p,Kj=1.2,...,m.
Using the notation introduced earlier (8) and (16) we can obtain the discrete values of the sought-for
function £(x, t):

X-,-j)=1z-,forj =1,2,3,..., m.

Thus, an algorithm for solving the problem discussed in the previous section is proposed, for which a
solution method is selected. Now a program for solving the problem for its special case scan be developed
and a numerical experiment can be conducted.

4. Special Case.

The case where the efflux velocity is constant. For specific implementation of the proposed
algorithm a specific form of the functiony (t) must be prescribed. For this case, consider an option when
the efflux velocity from the fissure is constant, i.e. y(t) - const. Without limiting the generality, in this

case, we can assume that y(t) = 1, and the formula (3.17) can be rewritten as follows:

2
S§=2T+, j=1283..m (24)

On the other hand, the value Sj may be approximately equal to the following sum:

S, =h~z, . (25)
1
From the formula (2) we conclude that following equation must be satisfied:
) n 2
heX zi =3 uT«J. (26)
i=1 3

This formula (26) is the condition for determining the value of the unknown parameter n.
Determination of values of parameter n (number of nodal points in the grid) is also performed with the
iterative method.

In this problem, the only parameter that determines the nature of the process in question parameter
ER. Therefore, solution ofthe problem will be carried out for different values of this parameter. Analysis
of the results of the numerical solution of this problem can be performed for each value of this
parameter. Values for this parameter are selected on the basis of the data available in the geological
literature [1-8].

5. Investigation Results.

The results of the numerical experiment. Based on the developed program a numerical experiment
has been conducted for different options of this problem. Computations were performed for the following
values ofthe dimensionless parameter ER: 0.1; 0.5; 1; 10.

The results are shown in graphs of the sought-for function for different timepoints t . In this case,
with all the values being the same of other parameters characterizing the viscous fluid, the dynamic
viscosity coefficient will have a relatively high value for small values ER.For large values of the
dimensionless parameter dynamic viscosity coefficient will be relatively small. This is due to the fact that
in the formula which determines the parameter ER the dynamic viscosity coefficient is in the denominator
i.e. this parameter is inversely proportional to the viscosity coefficient.

The computations were performed for the following values of the parameters of the problem:
h =0,01; £ =0,0001; s = 0,0001; n = 300.

5.1. Computational results.

The computation results for different time points and for different values of the dimensionless
parameter ER are presented . Here are shown graphs of the sought-for function z = £(x,t) for different
points and different time points.

In this case, the dynamic viscosity coefficient is considered relatively large; a flow of viscous fluid
that has leaked from the fissure, does not spread in the horizontal direction, it behaves as a rigid body. A
graphical representation ofthe results shown in Figure 1
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Figure 1- The positions of the free fluid boundary for ER =01

or

In this case, after a certain time the fluid begins to spread in the horizontal direction (the last column
of the table). This process is shown in Figure 2. Attime point t = 3 the horizontal boundary of the fluid,
the point of intersection of the free surface of fluid with the horizontal surface, moves to a certain
distance. In this case, at time point t = 3 the boundary is at the pointx = 1,2.

0 0,15 0,31 0,47 0,63 0,79 0,95 1,11 1,27 1,43 1,59 1,75 1,91
Figure 2 - The positions of the free fluid boundary forER = 0,5

Figure 2 shows that the boundary of the fluid is moved in the horizontal direction (for t = 3). There is
some spreading of the fluid in the horizontal direction. Compared with the previous case, when ER =0,1,
the effect of the viscosity coefficient is obvious.

A graphical representation of the outcome for parameter ER = 1is shown in Figure 3. In this case the
spreading of fluid in the horizontal direction is more visible than in the previous cases. At time pointt= 2
the horizontal boundary change occurs, and at time point t = 3the border is already at the pointx = 1,5.

Where ER = 10the fluid begins to spread already at time point t = 1,5. The horizontal boundary is at
pointx = 2,25.

A graphical representation ofthe table data shown in Figure 4.

It shows the change dynamics in the free boundary of the out flown fluid depending on the time. For
the parameter value ER = 10when the viscosity of the fluid is relatively low, over time it begins
spreading on the horizontal surface. Figure 1shows only the right-hand part of the area in question and its
borders (forx > 0). And its left-hand part (forx < 0 ) is the mirror image ofthe right-hand part.
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Figure 3 - The positions of the free fluid boundary forER = 1
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Figure 4 - The positions ofthe borderz =£ (x, t) forER =10
6. Data Comparison. When comparing the data, we can be convinced that a lower viscosity fluid

spreads in the horizontal direction more rapidly than the higher viscosity fluid.
For a comparative analysis it is appropriate to consider raising to the highest ofthe free surface ofthe
fluid i.e. comparison for the various cases the maximum values of the function z = %(x, t).

For this purpose a selection is made with the largest values of this function (Table) for different
values ofthe parameter ER . For comparative analysis here are given the data for different time points.

Comparison of the data in Table 1 shows that the liquid with a higher dynamic coefficient of
viscosity rises higher than the liquid with lower viscosity. This means that the viscous fluid with a large
dynamic viscosity behaves as a "solid" to a certain point of time.

Further evidence that the lower viscosity fluid spreads in the horizontal direction more rapidly than
higher viscosity liquid. This conclusion is derived from the comparison of the position of the flow-out
boundary for different values of ER.

Here are the results of computations for time interval 0<t <3 .In the case where ER = 0.1,
i.e. when the dynamic fluid viscosity coefficient is a large number, the horizontal flow-out boundary
remains unchanged. For ER = 0.5 change in this boundary begins aftert > 2,20, for ER = 1after t > 1,80

and ER = 10 after t > 1,05. To compare these results Figure 5 shows graphs of the function z = £(x, t)
for different values of parameter ER.
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The greatest values of the functionz = £ (x, t)

T ER=10 ER=1 ER=05 ER=01
0.50 0.4704 0.4958 0.4977 0.4994
1.00 0.7771 0.9178 0.9497 0.9868
105 0.7966 0.9520 0.9889 1.0336
110 0.8120 0.9847 1.0269 1.0797
125 0.8494 12078 1.3330 12144
150 0.8969 13042 14421 14238
180 0.9429 13929 15563 16471
185 0.9495 14137 15725 16813
190 0.9560 14316 1.5877 1.7146
2.00 0.9694 14581 16156 17789
2.20 0.9937 15061 16812 2.1379
2.25 0.9992 15162 16953 2.1595

Figure 5- Positions of free fluid boundary at time point t =3 for different values of ER

7. Conclusion. Analysis of the solutions of the problem for the dimensionless parameter values
discussed here is primarily concerned with the dynamic coefficient of viscosity. Obviously the same
results can be used to analyze in other parameters, e.g. density of earth formations or geometric
dimensions and others. However, the values of these parameters are determined by other research
methods. Information about them is available in the literature. Determination of the viscous properties of
the Earth's rocks is considered fairly complicated and hypotheses are used in many studies. Existing data
in the literature are determined through modeling studies of tectonic processes.
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3. Kypan6aesl A. A. TaypbekoBa2

1AnMaThbl 3HepreTuKa xaHe 6alinaHbIC yH1BEpcUTET, AnmaTbl, KasaxcraH,
XK. W. Catnaes aTbiHAarbl Kas¥TY, Anmartbl, KasaxcTtaH

ACA T¥TK;bIP/1bl C¥MbLL ThLL XUL1WKE APHALAH ATbIMN WbIFYbIHbLL
MATEMATUNKAbLL MOAE/1

AHHOTaUMA. Makana LW LW TEKTOHMKa/bLL, MPOLECTEPALL, 3CEPIMEH «XKLLLLIKE apHa» apKbl/bl Xorapbl KeTepb
NeTL KbI3AbIpblNraH MarmMaTUKasbiK 3aTTapAbll, Ko3aranbiCblH 3epTTeyre apHiaraH MatemMaTvKaiblKk Moge/b K¥pac-
ThIpyra apHa/siraH ecen KoWibinraH. HTerpangbl aiMarb! «e3repll OTbIpaTbiH» LLAPT KOK apKblibl napabona Tvnn
KBa3WCbI3bIKTbI TEHAEYAI LLELLYAiH XaLa XOo/bl ~CbiHblnraH. EcenTiH anroputMi K¥pbinbin 6argapiamachl xxacairaH
XK3HE HaKTbl Xarjaiiga caHaplk Tangay XYprisiareH. EcenTiH LWeLwimMiHiH HITVXECH )XepAiH acTbiHaH aca Tyrk™pibl
C¥IbIKTBIKTBIH«KLLLLLIKE apHa» apKbIfbDKepAL, 6eTiHe KeTepLun LWbIKKaH KO3ra/lbICbIHbIL (hyHKUMSA rpaduri TYpiH-
[le KepceTinreH.

TipeK ce3gep: marmasbik 3aTTap, aca Tyrk p/bl CMibIKTbIK, Napabona TUMT KBa3WCbI3bIKTbl TEHALY, aTOpPUTM
X3He ecenn wewly 6argapnamachl.

3. K. Kypan6aesl A. A. Tayp6ekoBa2

JANMaTVHCKNI YHUBEPCUTET 3HEPreTVKM 1 CBA3M, AnimaTbl, KasaxcTtaH,
KasHNTY mm. K. L. Catnaesa, Anmatbl, KazaxcraH

l-II/ICI'IEHHI:II7I‘JAHAI'II/I3 XAPAKTEPA NCTEYEHWA
CUNBHOBA3KOU XNAKOCTU N3 «Y3KOIO KAHANA»

AHHoTauus. MocTaBneHa matemaTuyeckas 3afava 06 UCTEYEHUM CWUIbHOBSA3KOM XKMAKOCTW M3 T.H. «y3KOro
KaHana» Ha OCHOBE MaTeMaTM4ecKOW MOAENN UCTeYeHUS MarMaTU4ecKux BellecTB. [pefanoXeH HOBbIA NOAX04 K
PELLEHMNIO KBa3U/IMHEHOIO YpaBHEHMS MapaboIMYecKoro Trna npy yCnoBUN M3MEHEHUS 061aCTN MHTErPUPOBaHUS.
Pa3paboTaHbl anroputM ¥ MporpaMma pelleHus 3ajadun, NPoBeAeH YMCNEHHbIA aHanu3 [ns YaCTHOro Cry4as.
Pe3ynbTaTbl peLUeHMs 3afadun NpefcTaBneHbl B BUAE TpagvkoB WCKOMOI (DyHKLMK, onpeaensitolleii cBOGOAHYH
MOBEPXHOCTb BbITEKLLIEH BA3KON XXULKOCTU.

KntoueBble CnoBa: MarmMaTMyeckne BELLECTBa, CUMbHOBS3KAN XMAKOCTb, KBa3WIUHERHOE ypaBHeHWe napa6o-
NIMYECKOTrO TWMa, aropMTM 1 MPOrpamMmmMa peLLeHmns 3agaqm.

CsefeHus 06 aBTopax:

Kypanbaes 3ayT6ek Kypanbaesny - fOKTOP (.-M.H., npodeccop Kadenpbl «MaTemaTnyeckoe MOAeIMpoBaHUs
1 nporpamMHoro obecneyeHus» npn AY3C, e-mail - zaufan@mail.ru

TaypbekoBa AliHyp AgmnrasbieBHa -PhD KasHTY um. K. W. CartnaeBa, kajegpa «KomnbloTepHas v npo-
rpaMMHas UHXXeHepusi», CTapluuii npenogasatent kadenpbl «MaTemaTnueckoe MOAENMPOBaHWA WM NPOrpamHoro
o6ecneyveHus» npn AY3C, e-mail - ainura_071@mail.ru
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