УДК 541.128.13;665.644.26

L.B. SHAPOVALOVA, G.D. ZAKUMBAEVA, A.A. ZHURTBAEVA, I.A. SHLYGINA

CO₂ REFORMING OF METHANE ON RU- CO /AL₂O₃- CATALYST

The interaction between CO_2 and CH_4 on Ru-Co/Al₂O₃ catalysts of clusters type has be-en studied with the application of the experimental and quantum-chemical methods. The basic products of $CO_2 + CH_4$ interaction are C_1-C_4 -alcohols and C_1-C_4 -acids on Ru-Co/Al₂O₃ Quantum-chemical calculation has been shown that CO_2 and CH_4 molecule can introduce into the monoand bimetallic Co-, Ru- and Co-Ru -clusters. Quantum-chemical accounts show that C-H bonds lengthening for "CH₄ + CO₂ + M-clusters" systems are less then ones for "CH₄ + M-clusters". However, binding energy is stronger in "M-clusters+CO₂+CH₄"-systems than ones in "M-clusters+CO₂" or "M-clusters+CH₄"

INTRODUCTION

The interaction between CO_2 and CH_4 has been proposed as one of the most promising technologies for utilization of these two gases. The molecules of the greenhouse gases CO_2 and CH_4 have very strong energies of C-O and C-H-bonds. Most of reactions involving CO_2 activation contain metal atoms as the active center. The application of multicomponent metallic supported catalytic systems supply the wide opportunities for activation of molecules and the chemical syntheses on the CO_2 and CH_4 base

Recently the results of study of interaction between hexene-1 or propylene and CO_2 on Ru-Co/Al₂O₃ and Rh-Co/Al₂O₃ have been published [1-3]. In this paper the process of interaction between CO_2 and CH_4 over Ru-Co/Al₂O₃ and Ru-Co/Al₂O₃ +ZSM cluster type catalysts has been studied.

EXPERIMENTAL

The interaction between CO_2 and CH_4 on Ru-Co/Al₂O₃ and Ru-Co/Al₂O₃ modified by ZSM-zeolite catalysts of clusters type has been studied with the application of the experimental and quantum-chemical methods. Quantum-chemical calculation have been made on the basis of ZINDO-1 (quantum-chemical programs Hyperchem-6). [4-7].

The CO_2+CH_4 reaction was carried out in flow type reactor in the range of 473-723 K and pressure variation from 0.1 to 1.0 MPa. Catalysts were prepared by impregnation of support with mixture of RuCl₃ and $Co(NO_3)_2 \cdot 6H_2O$ solution. Then they were reduced by hydrogen at 773K during 3 hours, washed from Cl' and NO_3' ions and dried up in the air at 303-323K. Catalyst was additionally reduced directly in the reactor at temperatures from 473 to 673K during 1 hour before the reaction between CO_2 and CH_4 . The reactant gas mixture consists in $CO_2 + CH_4$ diluted with Ar. The ratio of $CO_2 : CH_4 : Ar$ is 1: 0.5 : 6.

The reaction rate was controlled on CH_4 decrease by using a chromatographic analysis. IR-spectra of reactants adsorbed on catalyst surface were recorded in a Specord IR-75 spectrometer in the 1200-3500 cm⁻¹ range.

RESULTS AND DISCUSSION

The basic products of CO_2 + CH_4 interaction are C_1 - C_4 -alcohols and C_1 - C_4 -acids and aldehydes on Ru-Co/Al₂O₃ at the range of 473-723K and 0.1-1.0 MPa (Table 1). For example, the CH_4 conversion is 25.9% at T=573K and P=0.35MPa. The reaction products are methanol (3.8%), formaldehyde (1.4%), ethyl alcohol (2.7%), ethyl (1,4%) and propionic (8,6%) aldehydes, propionic (35,5%), butyric (19.5%), formic(10.8%) and acetic (20.2%) acids. At 0.6 MPa and T=573K the CH₄ conversion is 46.8%. The propionic (20.1%) and acetic (31.5%) acids, propionic aldehyde (17.8%), butanol-2 (3.8%), methanol (7.6%) and formaldehyde (1.9%) are mainly products under these conditions. Besides that there are traces of CO, O₂, H₂ and C₂-C₄-hydrocarbons.

It was calculated the adsorption models of 3 types: "M-cluster + CO_2 .", "M-cluster + CH_4 " and "M- cluster + CH_4 + CO_2 " by quantum-chemical ZINDO methods (Table 2). There was used ZINDO method giving more high value of binding energy of molecules in comparison with real ones. But this method allows to estimate the changes in binding energy in complex : "Mcluster + molecule" depending on the cluster nature. The accounts were made in comparable conditions. It has been shown that CO_2 molecule can introduce into the mono- and bimetallic Co-,Ru- and Co-Ru -clusters. The ? E_{bind} change shows that binding energy between the atoms of the CO_2 molecule and the metal atoms of Ru-

Products, %		0,35 MPa			0,6MPa			
	473K	573K	673К	723К	473K	573K	723K	673K
?C,-hidrocarbons	-	0,4	_	2,0	0,3	0,7	0,7	1,0
Formaldehvde	5.9	1.4	3.7	3.8	1.0	1.9	4.8	1.6
Methanol	36,4	3,9	21,1	25,6	7,6	7,6	10,5	8,3
Ethyl alcohol	18,6	2,7	11,7	4,5	1,2	-	10,8	3,2
Propanol	-	-	-	-	15,7	-	6,3	1,1
Butanol-2	-	-	12,7	-	2,1	3,8	_	11,0
n-Butanol	-	-	-	-	7,8	-	16,9	10,0
Butyraldehyde	9,7	10,8	6,7	-	5,9	-	19,1	6,1
Unidentifical								
prodacts	-	1,4		-	-	-	-	-
Ethyl acid	29,4	20,2	23,2	-	21,5	31,5	-	0,7
Propiohaldehyde	-	8,4	-	-	-	17,8	25,4	25,4
Propionic acid	-	35,5	20,9	64,1	26,1	28,1	5,6	12,7
Butyric acid	-	15,5	-	-	10,8	8,6	-	18,8
C ₅ oxigenetes	-	-	-	-	-	-	-	-
Conversion of CH ₄ , %	21,0	25,0	10,3	10,1	10,6	12,6	9,9	12,0

Table 1. The interaction of carbon dioxide and methane on 5% Ru-Co/Al₂O₃ -catalyst

Table 2. The quantum-chemical accounts of CO₂, CH₄ and CO₂ + CH₄ over Ru-, Co- and Ru-Co-clusters

Complexes	E_{bind} $\Delta_1 E_{bind}$ $\Delta_2 E_{bind}$			Bond lengths, Å			
		kcal/mol		C-0	С-Н	M1-M1	
Co4	126,70					2.82-3.84	
Co4	63.29					2.84-4.11	
Co10	305.42					2.82-4.35	
Co2Ru2	66,51					2.67-4.86	
Co2 Ru2	70,23					2.54-3.20	
Ru4	38.18					2.66-3.24	
Ru10	-115.57					2.66-3.12	
Co4 CO ₂	-1022.34	-434.60		1.38-1.39		3.39-3.91	
Col0 CO ₂	-991.67	-583.35		1.35-1.38		2.82-3.90	
*Co2 Ru2 CO ₂ -1	-1165.83	-518.59		1.39-1.40		2.90-3.80	
*Co2 Ru2 CO ₂ -2	-1188.57	-541.34		1.38-1.39		3.10-3.82	
*Co2 Ru2 CO ₂ -3	1177.58	-530.35		1.37-1.38		3.10-3.53	
*Co2 Ru2 CO ₂ -4	1185.79	538.56		1.37-1.39		3.09-3.84	
Co2 Ru2 CO ₂	-1174.28	530.77		1.41-1.42		2.97-3.80	
Ru4 CO ₂	-1274.88	-599.32		1.42		2.71-3.70	
$Ru10 CO_2$	-1595.21	-765.90		1.46		2.80-3.60	
Co4 CH ₄	-1122.50		-184.03		1.14-1.15	2.81-3.58	
Co2 Ru2 CH ₄	1265.32		-330.07		1.18-1.22	3.28-3.72	
Ru4 CH ₄	-1382.46		-418.88		1.23-1.28	3.29-3.64	
$Co4 CO_2 CH_4$	-2097.40		-445.19	1.37-1.38	1.10-1.12	3.28-3.66	
Co2Ru CO ₂ CH ₄	-2371.67		722.68	1.35-1.36	1.10-1.16	2.93-4.70	
Ru4 CO ₂ CH ₄	-2484.45		-807.13	1.43	1.10-1.15	2.70-3.67	

 $\Delta_{1} \mathbf{E}_{bind} = \mathbf{E}_{bind} (\mathbf{ML}_{n} \mathbf{CO}_{2}) - \mathbf{E}_{bind} (\mathbf{ML}_{n}) - \mathbf{E}_{bind} (\mathbf{CO}_{2}); \mathbf{\Delta} \mathbf{E}_{bind} = \mathbf{E}_{bind} (\mathbf{ML}_{n} \mathbf{CH}_{4}) - \mathbf{E}_{bind} (\mathbf{ML}_{n}) - \mathbf{E}_{bind} (\mathbf{CH}_{4}); \mathbf{\Delta} \mathbf{E}_{bind} = \mathbf{E}_{bind} (\mathbf{ML}_{n} \mathbf{CO}_{2} \mathbf{CH}_{4}) - \mathbf{E}_{bind} (\mathbf{ML}_{n}) - \mathbf{E}_{bind} (\mathbf{CH}_{2}); \mathbf{\Delta} \mathbf{E}_{bind} = \mathbf{E}_{bind} (\mathbf{ML}_{n} \mathbf{CO}_{2} \mathbf{CH}_{4})$

**** \mathbf{E}_{bind} ($\mathbf{ML}_{n}\mathbf{CO}_{2}$) - binding energy of "M-cluster + \mathbf{CO}_{2} .", \mathbf{E}_{bind} (\mathbf{ML}_{n}) - binding energy of M-cluster, \mathbf{E}_{bind} ($\mathbf{ML}_{n}\mathbf{CO}_{2}\mathbf{CH}_{4}$) - binding energy of "M-cluster + \mathbf{CH}_{4} + \mathbf{CO}_{2} ." \mathbf{E}_{bind} (\mathbf{CO}_{2}) - binding energy of the \mathbf{CO}_{2} molecule, \mathbf{E}_{bind} (\mathbf{CH}_{4}) - binding energy of \mathbf{CH}_{4} -molecules, \mathbf{E}_{bind} ($\mathbf{ML}_{n}\mathbf{CH}_{4}$) - binding energy of "M-cluster + \mathbf{CH}_{4} ."

, Co- and Ru-Co-clusters increases when the quantity of Ru rises. The insertion of the CO_2 molecule into the Co-, Ru- and Co-Ru-clusters changes their configurations and M-M-lengths.

Analogical phenomena are observed when the interaction between CH_4 -molecules and Co-, Ru or Ru-Co-clusters takes place (Table 2). In case CH_4 -adsorbtion on 4Ru-clusters the M-M-lengths are increased from 2.66-3.24 A to 3.29-3.64 A. For 2Co-2Ru- clusters the M-M-lengths are 2.67-4.86 A (without CH_4) and 3.26-3.72 A (with CH_4). 4Co- clusters are exposed to the radical changes by reason of the CH_4 adsorption: it was became plane. There are the loosing and cleavage of C-H-bonds of CH_4 molecules adsorbed on Co-, Ruand Co-Ru-clusters. The binding energy of CH_4 molecules with mono- and bimetallic clusters are -418.88kcal/mol (4Ru); -330.1 kcal/mol (2Co-2Ru) and -184.03kcal/mol (4Co). The strongest bond is observed for system " CH_4 +4Ru".

The figure 1 shows the optimized structures of joint adsorption of $CH_4 + CO_2$ on mono- and bimetallic Co-, Ru- and Co-Ru-clusters. Quantum-chemical accounts show that the C-H bonds lengthening for " $CH_4 + CO_2 +$ M- clusters" systems are less then ones for " $CH_4 +$ M-clusters". However, binding energy is stronger in "M-clusters+ CO_2 + CH_4 "-systems than ones in "M-clusters+ CO_2 " or "M-clusters+ CH_4 ".

IR-data of CO₂ adsorption on Co-Ru-catalysts are conformed with quantum- chemical calculations. Adsorption bands of CO₂^{gas} (2350 cm⁻¹), CO_{2ads} (1580 and 1440 cm⁻¹). CO_{ads} (1950 cm⁻¹, 2020 cm⁻¹) are presented in IR-spectra of adsorbed CO₂

Figure 1. The optimized structures of adsorbed CO and CH on Co4 (A), Ru4 (B) and Co2Ru2 (C) clusters ${\rm ^4}$

The experimental and quantum-chemical accounts show that the mechanism of the interaction between CO_2 and CH_4 on Ru-Co/Al₂O₃ is very complicated. Probably the first stage of the $CO_2 + CH_4$ interaction is the cleavage of molecules bonds:

$$\begin{split} & CH_4 > CH_{3ads} + H_{ads} & CO_2 > CO_{ads} + O_{ads} > CO^* + O_{ads} \\ & CH_{3ads} > CH_{2ads} + H_{ads} & CO_{ads} > C_{ads} + O_{ads} \\ & CH_{2ads} > CH_{ads} + H_{ads} > C_{ads} + H_{ads} \end{split}$$

Syntheses-gas $(CO + H_2)$ may be the one of the possible product This suggestion is confirmed with the results of the CO₂ + methane interaction on Ru-Co/Al₂O₃+ ZSM-zeolite catalyst. IR- Spectroscopy data of NH₃ adsorption show that the ZSM-zeolite incorporation into Ru-Co/Al₂O₃ is accompanied by the increase Lewis acidic centers (adsorption bands at 3550, 3400, 1600 cm⁻¹) and catalyst's de-structive ability. The CO and hydrogen are main products formed over Ru-Co/Al₂O₃+ ZSM-zeolite catalyst.

REFERENCES

1. Zakumbaeva G.D., Shapovalova L.B. Japan-FSU Catalysis. Seminar (1994). "Catalytic Science and Technology for 21 Century Life", Japan (1994) 28.

2. Zakumbaeva G.D, Shapovalova L.B. Advances in Chemical Conversions for Mitigating Carbon Dioxide. Studies in Surface Science and Catalysis. Elsevier Science B.V. V. 114 (1998) 171.

3. Shapovalova L.B., Zakumbaeva G.D., Gabdrakipov A.V., Shlygina I.A., Zhurtbaeva A.A. // Applied. Organomet. Chem. V.14 (2000) 853

4. Hoffmann R. // J. Chem. Phys. 1963. V.39. N 6. P. 1397.

5. Anderson A.B., Hong S.I., Smialek J.Z. // J. Phys. Chem. 1987. V.91. N161. P. 4245.

6. Efremenko J.G., Zilberberg J.L., Zhidomirov C.M., Pak A.M. // React. Kinet. Catal. Lett. 1995. V.56, № 1, P.77-86.

7. Гурвич В., Караченцев Г.В., Кондратьев В.Н. и др. Энергия разрыва химических связей. Потенциал ионизации и сродство к электрону. М.: Наука, 1974.

Резюме

Экспериментальды және квантты-химиялық әдістерді қолдана отырып Ru-Co катализаторларында CO₂ мен CH₄ әрекеттесуі және адсорбциясы зерттелді.

Институт органического катализа и электрохимии им. Д.В.Сокольского, г.Алматы

Поступила 23.01.2006 г.