
130

 2007. 6

A. S. BORANBAYEV

PRINCIPLES FOR DEVELOPING ARCHITECTURE AND DESIGN
OF WEB APPLICATIONS AND INTERFACE IN INFORMATION SYSTEM

When architecting and designing an application,
you are in the first phase of the software life cycle.
There are usually many existing blueprints and
design patterns that can be used as a starting point
to build the application.

1. Overview
When designing an application, the advantage of

using an existing blue print or design pattern is that they
solve many issues common to application development.
There are also many factors to take into account when
planning the application. This includes performance,
scalability, packaging and deployment restrictions.

One of the biggest promises of object-oriented
development has been that of promoting code reuse.
That promise is built on the idea that if you were to
build generic objects, those could be used and reused.
Some prime examples of such code reuse would be
frameworks like SDF, etc.

By Software Development Framework (SDF) I
mean a programming language, standardized libraries,
and any tools that are part of the normal development
process. Software Development is about getting
specified tasks done by recording appropriate directions
which will be performed later by a mechanism.

The question that comes to mind is how to take
that one step further and be able to reuse business

functionality. Till so far, architects and designers
have been able to contain business logic in a set of
business objects that comprise the Business Layer.
How do we package this business functionality such
that different types of clients could reuse it? This
article aims at addressing such concerns.

Layered Approach 2.
The first principle of creating business services

is that of separation of layers [1]. A layer consists of
entities that share similar responsibilities. For
instance, the data access object layer contains objects
that are responsible for providing access to various
data stores. The diagram above depicts the various
layers in a typical application. In order to eliminate
circular dependencies, a lower layer never depends
on a higher layer. For instance, the Services Layer
should not accept HttpServletRequest as an input
parameter. Doing so makes it dependent on a type of
Invocation Layer. A higher layer would always
depend on the functionality provided by the lower
layer. Based on this principle the Services layer
should not contain any of the following:

HTTP/ Servlet / Swing API.
Java remoting or UI technology specific

constructs.
JDBC constructs.

Client Tier
Thick Java
Client

Thing Client Stand Alone
Java App

Non-Java
Application

 SDF/Local Method Call Web Services

Invocation Tier

Services Layer

Business objects Layer

 Data Access Objects Layer

A
PI D

ependency

131

3. Interface Driven Design and Development
The second principle is that of Interface driven

design and development. It states that software
designers should define clear interface specifications
for components [1]. All collaborations amongst
components within a layer and across layers should
be driven by these interface specifications or con-
tracts. The big advantage of this principle is that it
forces designers to assign specific responsibilities
to components, and it helps to identify the various
collaborations amongst components. An additional
advantage is that implementations of these interfaces
can evolve over time, without disrupting the other
dependent components.

The Factory design pattern is a good way to cleanly
separate the instantiation of an implementation of
an interface, from the use of the interface itself.

4. Business Services
A service consists of a collection of components

that work in concert to deliver the business function
that the service represents. It is an abstraction layer
on top of the functionality exposed by business
objects, which in turn are fine-grained and are solely
focused on implementing the individual steps of a
business process workflow. Services orchestrate
various operations across multiple business objects,
thus promoting the reusability of business objects.
Any extensive orchestration of service operations by
the calling clients should essentially be exposed as
a coarse-grained operation on the service itself. At
times, services may appear as a pass-through layer
but they provide the flexibility of being able to create
orchestrations of the business objects, in future.

Services are process-centric, in that they map to
the business functions that are identified during
business process analysis. They encapsulate business
functionality and for all practical purposes can be
treated as black boxes.

All validations are performed within the
operations

All entity relations are handled within the
operations

Invocation of services is stateless, as service
requests don’t depend on each other. Services may
be fine- or coarse-grained depending upon the
business processes. However fine-grained calls to a
service, over a network can increase network chatter
and clog the network.

5. Operations on Business Services
The operations on a service can be exposed as:
1. Local calls within an application server.
2. Local calls in stand-alone / desktop based program.
3. Local calls in batch program invoked by a shell.
4. XML based Apache soap, axis etc for Java

based providers and consumers.

The types of input and output parameters of the
operations on a service are restricted. This is mainly
for the benefit of the various channels accessing the
service. The following JAX-RPC restrictions apply
to the input and output parameters.

6. JAX-RPC Restrictions
JAX-RPC (Java API for XML-based Remote

Procedure Calls) allows invoking from a Java appli-
cation a Java based Web Service with a known
description while still being consistent with its
WSDL description [2] [3].

JAX-RPC uses SOAP and HTTP to do RPCs
over the network [4]. RPC stands for remote
procedure calls, and is used for making procedure
or function calls and receiving the responses. The
SOAP specification defines the necessary structure,
a convention for doing RPCs, and its corresponding
responses. The RPCs and responses are transmitted
over the network using HTTP as the primary
transport mechanism.

From an application developer’s point of view,
an RPC-based system has two aspects: the server
side (the Web service) and the client side. The Web
service exposes the procedures that can be executed,
and the client does the actual RPC over the network.

The Web service environment is based on open
standards such as SOAP, HTTP, and WSDL. It is
therefore possible that a Web service or a client
wasn’t developed using the Java platform. However,
JAXR-RPC provides the mechanism that enables a
non-Java client to connect to a Web service deve-
loped using Java platform, and vice versa [5].

The runtime protocol works as follows:
1. A Java program invokes a method on a stub.
2. The stub invokes routines in the JAX-RPC

runtime system.
3. The runtime system converts the remote

method invocation into a SOAP message.
4. The runtime system transmits the message as

an HTTP request.

132

 2007. 6

The consumer becomes aware of the provider
services through the machine readable WSDL file.
Construction of the consumer relies on the WSDL
from the provider.

JAX-RPC is WS-I compliant and is widely accepted
among the industry. WS-I stands for “The Web Services
Interoperability Organization”. WS-I is an industry
consortium created to promote inte-roperability
among the stack of web services specifications [6].

The following are the JAX-RPC supported Java
types:

One of the Java primitive types (boolean, byte,
short, int, long, float, double)

A subset of the standard Java classes (as
specified in the J2SE APIs)

1. java.lang.String
2. java.util.Date
3. java.util.Calendar
4. java.math.BigInteger
5. java.math.BigDecimal
6. javax.xml.namespace.QName
7. java.net.URI

A Java array with members of a supported
JAX-RPC Java type.

A service specific exception; declared in a re-
mote method signature must be a checked exception.
It must extend java.lang.Exception either directly or
indirectly but must not be a RuntimeException.

A JAX-RPC value type is a Java class, whose
value can be moved between a service client and
service endpoint. A Java class must follow these rules
to be a JAX-RPC conformant value type:

1. Java class must have a public default constructor.
2. Java class must not implement (directly or

indirectly) the java.rmi.Remote interface.
3. Java class may implement any Java interface

(except the java.rmi.Remote interface) or extend
another Java class.

4. Java class may contain public, private, pro-
tected, package-level fields. The Java type of a public
field must be a supported JAX-RPC type.

5. Java class may contain methods. There are no
specified restrictions on the nature of these methods.
Refer to the later rule about the JavaBeans properties.

6. Java class may contain static or transient fields.
7. Java class for a JAX-RPC value type may be

designed as a JavaBeans class. In this case, the bean
properties (as defined by the JavaBeans intro-
spection) are required to follow the JavaBeans design
pattern of setter and getter methods. The Java type of

a bean property must be a supported JAX-RPC type.

7. Configuration and Deployment of Business
Services

Services are independent of the way they are
deployed. Specifically, in an SDF deployment setting,
Services should not rely on the Proxy Servlet to
initialize other framework-related services like the
DBConnectionProvider, etc. The services and the
related business objects should take that fact into
account and use alternate API to initialize and access
such services.

8. Exception Handling in Business Services
An exceptional condition prevents the continua-

tion of an operation that has been called on a service.
At that point control is relegated from the service
back to the client. The service then provides adequate
information on the exceptional condition. The follo-
wing describes how exceptions should be handled
in the services layer:

1. Each service operation will throw one and only
one exception. This exception relates directly to the
service domain. For instance, the Enterprise Alerts
service throws an ‘AlertsException’.

2. The exception object will support error codes,
their corresponding messages, and nested exceptions.

3. Each layer underneath the service layer is
responsible for handling its own exceptions. A higher
layer will not directly deal with exceptions that
originate in a lower layer. Exceptions will be handled
in the layer in which they originate.

4. Each exceptional condition will have a corres-
ponding error code and a detailed message. Upon
catching an exception, assign it the appropriate error
code and message, and then encapsulate it in a layer
specific exception object. This object is the one that
will be thrown back to the calling layer.

For instance an object in the Data Access layer,
upon encountering either a CompanyDataException
or a CompanyConnectionException will assign it the
appropriate error codes, detailed messages, and will
then encapsulate it in a ‘MyCustomDataLayerException’
object before throwing it back to the business object layer.
The Business Object layer in turn will wrap the exception
in a ‘MyCustomBusinessObjectLayerException’ object
before throwing it back to the services layer. Finally
the Services Layer will wrap this exception in a
service domain specific exception (described earlier),
and throw it back to the client [7].

133

9. Ensuring Backwards Compatibility for
Java Clients

The service interface is a contract between the
service provider and the consumers of that service.
Once the interface has been published, any changes
to it will make its existing clients incompatible with
the service. However not all changes have such an
affect. The following guidelines should help protect
existing clients from any evolution in the service:

The best way to ensure backwards compa-
tibility is to always extend an interface. That cleanly
separates the contracts between the existing and the
new clients.

It is a good idea not to modify or remove opera-
tions from a published interface. The same applies
to objects that are published as input/output para-
meters, and exceptions, on the operations of a service.

10. SDF and Code Reuse
It is asserted that the primary goal of develop-

ment frameworks is to manage complexity. Closely
related are the requirements that code be main-
tainable, extensible, and implementable by separate
programmers.

It is important that code be verifiably performing
as specified. It is also desirable that code be easily
created quickly. It is then argued that fundamental
to any attempt to manage complexity is a strong and
extensible type system. It is in no way asserted that
a strong and extensible type system by itself
guarantees an excellent SDF.

Code Reuse => Parameterized Functions =>
Interface Definitions => Type Validation => Strong
Typing.

Data Structures => Per Structure-Instance
Methods => Classes.

Predictable Behavior => Object References.

Code reuse is the bedrock of reducing comp-
lexity. If the same thing is done twice, then it should
be done in one place, so that improvements in the
process need only be done once. Most modern
languages encourage code reuse.

A parameterized function allows code to perform
the same actions on different data. The concept of
parameterization has been extended in some
languages to allow parameters to determine what the
function does.

An ideal SDF automatically detects code reuse,
and allows the reduction of repeated code to a single

parameterized function without incurring any hidden
costs.

Every non-trivial parameterized function can
only successfully perform its work on a subset of
the possible data-objects that could be used as para-
meters. The definition of what work is performed,
what subset of objects may be appropriately used as
parameters, and what qualities any returned objects
can be expected to have is called the Interface.

11. Conclusion
In this article, I have talked about business

functionality reuse, code reuse, and about guidelines
for creating Business Services, when developing
Web Applications. I have showed how to package
the business functionality such that different types
of clients could reuse it. I have addressed important
architecture topics and development steps that one
should consider in a J2EE project. The information
is taken from real-world experiences, and is intended
to help developers build J2EE systems.

REFERENCES

1. Boranbayev A.S. Reference Architecture for Web
Applications // -

. 2007. 5.
2. WebService, from Wikipedia, the free encyclopedia:

http://en.wikipedia.org/wiki/Web_service
3. Web Services Activity - http://www.w3.org/2002/ws/
4. Boranbayev A.S. Optimal Methods for Java Web Services

// -
, . 2007. 5.

5. Chapter 11: Working with JAX-RPC from the book «Java
APIs for XML Kick Start» by Aoyon Chowdhury and Parag
Choudhary, published by Sams Publishing.

6. Web Services Interoperability, from Wikipedia, the free
encyclopedia: http://en.wikipedia.org/wiki/WS-I

7. Boranbayev A.S. Development of E-business websites
using a multi-tiered architecture and J2EE // VI

-
 “ -

-
”. , 2007. . 87-91.

.
i .

-
.

.
UDC 681.3

L. N. Gumilyov Eurasian
National University 13.12.07 .

http://en.wikipedia.org/wiki/Web_service
http://www.w3.org/2002/ws/
http://en.wikipedia.org/wiki/WS-I

