Б.Ж. ТОКСАНБАЕВ^A, Е.А. ВАСИЛЬЧЕНКО^B, А.М. ЖУНУСБЕКОВ^A, А.Ч. ЛУЩИК^B, В.П. НАГИРНЫЙ^B, Т.Н. НУРАХМЕТОВ^A, Ф.А. САВИХИН^B

ЛЮМИНЕСЦЕНЦИЯ КАТИОННЫХ ЭКСИТОНОВ В КРИСТАЛЛАХ GD₂SIO₅

(Представлена академиком НАН РК Н.Ж. Такибаевым)

Для монокристаллов Gd₂SiO₅ и Gd₂SiO₅:Ce³⁺ выделена и исследована люминесценция катионных экситонов (Gd³⁺) и примесных Ce³⁺-центров при возбуждении электронами 10 кэВ или фотонами 4-20 эВ при 5-8 К, или одиночными наносекундными импульсами электронов 300 кэВ при 80 К. Для Gd₂SiO₅ зарегистрирована тонкая структура f®f электронных переходов в ионе Gd³⁺ с основного уровня $^{8}S_{7/2}$ на возбужденные уровни $^{6}P_{J}$ (поглощение в области ~ 4 эВ), $^{6}I_{J}$ (~4,5 эВ) и $^{6}D_{J}$ (~5 эВ), а также почти резонансные с этими переходами в поглощении линии излучения. Эффективность свечения 3,95 эВ ($^{6}P_{J}$ ® $^{8}S_{7/2}$) при 8 К особенно высока, когда фотоны возбуждают окружающие Gd³⁺ ионы кислорода (6,8-8,0 эВ) или создают электроны и дырки в режиме размножения.

Разработка и усовершенствование быстрых радиационно-стойких сцинтилляторов является одним из основных направлений в физике сцинтилляционных материалов. Материалы на основе сложных оксидов редкоземельных элементов отличаются повышенной термической, химической и радиационной стойкостью, а также высоким световым выходом сцинтилляций, причем при использовании Се³⁺ ионов в качестве центров люминесценции - и приемлемым быстродействием (см., например, [1]). Перспективны в том числе и легированные ионами Се³⁺ сцинтилляторы на основе оксиортосиликата гадолиния (Gd₂SiO₂) и их более сложных аналогов (например, Gd_{2-v}Lu_xSiO₅) [2-4]. Однако полное использование пока скрытых возможностей таких монокристаллов требует детального комплексного изучения механизмов их функционирования. Важная информация может быть получена при изучении базового материала Gd₂SiO₅ методами вакуумной ультрафиолетовой (ВУФ) и термоактивационной спектроскопии (ТАС) в широком диапазоне температур (5-700 К), как это было ранее сделано для многих щелочногалоидных кристаллов [5], включая LiF [6], и для CaSO₄ [7]. В настоящей работе приводятся оригинальные результаты комплексного исследования монокристаллов Gd₂SiO₅ высокого оптического качества и уровня чистоты. Некоторые характеристики Gd₂SiO₅ и Gd₂SiO₅:Ce³⁺ были ранее изучены в [2-4, 8]. Особое внимание мы уделили роли катионных электронных возбуждений Gd₂SiO₅ в процессах низкотемпературной люминесценции под воздействием УФ- и ВУФ-радиации, а также электронов с энергиями 5-10 или 300 кэВ.

Измерения выполнены на кристаллах Gd₂SiO₅ и Gd₂SiO₅:Ce³⁺(0,5 мол%), выращенных методом Чохральского в Институте сцинтилляционных материалов (Харьков, Украина) [4]. Использованы плоскопараллельные полированные пластины размером 6 ө 6 ө 0,4 мм³. Спектры оптического поглощения измерялись на спектрофотометре JASCO V-550 с пределом измерения оптической плотности OD = 4 и чувствительностью 0,01. Спектры катодолюминесценции в области 1,7-11 эВ измерялись при 5-420 К с использованием двухканальной системы (двойные вакуумный и ДМР-4 монохроматоры с фотоумножителем Hamamatsu R6838 или счетчиком фотонов Н6240) при возбуждении электронами 5-10 кэВ (подробнее смотри в [6]). В спектры излучения внесены все необходимые поправки. Быстрое свечение, возбуждаемое одиночными мощными импульсами электронов (300 кэВ, ~3 нс) генератора ГИН-600 системы Месяца-Ковальчука, регистрировалось при 80 или 300 К в нано- и микросекундных интервалах с помощью запоминающего осциллоскопа Tektronix TDS 3032 (см. [9]). Нормализованные по свечению эталонного салицилата натрия спектры возбуждения для различных свечений измерены при 8 К с использованием синхротронного излучения 4-20 эВ на канале SUPERLUMI (HASYLAB at DESY, Гамбург, Германия), детально описанном в [10].

На рис. 1 приведены спектры оптического поглощения Gd_2SiO_5 и $Gd_2SiO_5:Ce^{3+}(0,5 \text{ мол}\%)$ при 295 К. В Gd_2SiO_5 четко видны узкие слабые линии, соответствующие запрещенным 4f⁷ ® 4f⁷ электронным переходам ${}^8S_{7/2}$ ® 6P_J (в области 4 эВ), ${}^8S_{7/2}$ ® 6I_J (~4,5 эВ) и ${}^8S_{7/2}$ ® 6D_J

Рис. 1. Спектры оптического поглощения Gd_2SiO_5 (кривая 1) и $Gd_2SiO_5:Ce^{3+}$ (0,5 мол%, кривая 2), измеренные с шагом 0,1 нм при 295 К.

(~5 эВ) в ионах Gd³⁺. Значительно более интенсивное широкополосное поглощение зарегистрировано при разрешенных 4f¹ ® 5d¹ переходах в Се³⁺ в области 3,6 и 4,3 эВ для Gd₂SiO₅:Ce³⁺. На рис. 2 представлены спектры катодолюминесценции Gd₂SiO₅ И Gd₂SiO₂:Ce³⁺ при возбуждении 10 кэВ электронами при 5 К. В спектре Gd₂SiO₅ видно интенсивное узкополосное свечение ~3,95 эВ и существенно более слабые линии свечения около 4,4 и 4,85 эВ, соответствующие люминесценции катионов Gd³⁺ (электронные переходы ⁶Р_J ® ⁸S_{7/2}, ⁶I_J⁸ ® S_{7/2}, и ⁶D_J ® ⁸S_{7/2}), а также широкополосное свечение с максимумом ~2 эВ, имеющее коротковолновую компоненту при ~2,6 эВ. Свечение 2,5-3,2 эВ существенно лучше выражено в спектре катодолюминесценции Gd₂SiO₅:Ce³⁺, хорошо возбуждается в полосах поглощения Се³⁺ и соответствует, в основном, свечению примесных Се³⁺-центров [2]. Даже максимально чистые образцы Gd₂SiO₅ содержат некоторое

Рис. 2. Спектры катодолюминесценции при возбуждении 10 кэВ электронами (*a*) и инерционной фосфоресценции (*b*), измеренные для $Gd_2SiO_5(1, 3)$ и $Gd_2SiO_5:Ce^{3+}(2, 4)$ при 5 К.

количество примесных ионов Се³⁺ (Ә 0,01 мол%). Введение в Gd₂SiO₅ 0,5 мол% Ce³⁺ионов приводит к ослаблению Gd³⁺-свечения 3,95 эВ в ~3 раза, а также ослабляет предполагаемое свечение экситонов, автолокализованных на ионах кислорода (~2 эВ). На рис. 2 также приведены спектры инерционной (многоминутной) фосфоресценции, измеренные для Gd₂SiO₅ и Gd₂SiO₅:Се³⁺ при 5 К после выключения возбуждающего пучка электронов. В обоих спектрах фосфоресценции регистрируется слабое широкополосное свечение 1,7-3,3 эВ. Свечение ионов Gd³⁺ при 3,95 эВ есть только в спектре Gd₂SiO₅, присутствие же 0,5 мол% примесных ионов Се³⁺ усиливает фосфоресценцию 2,4-3,2 эВ, но подавляет её при hn > 3,2 3B.

Рис. 3 демонстрирует спектры возбуждения Gd_2SiO_5 , измеренные для выделенных монохроматором свечений 3,92 эВ (свечение Gd^{3+}) и 2,6 эВ с использованием синхротронного излучения 4-20 эВ при 8 К. Свечение

Рис. 3. Спектры возбуждения, измеренные в Gd_2SiO_5 для в свечений 3.92 эВ (свечение Gd^{3+} , кривая 1) и 2.6 эВ (2) и 2,1 эВ (3) с использованием синхротронного излучения 4-20 эВ. Спектры излучения при возбуждения Gd_2SiO_5 фотонами 10,8 (4) или 16,5 эВ (5). Спектры измерены при 8 К.

Gd³⁺ эффективно возбуждается в областях 4,1; 4,45; 6,5-8,0 и 16-20 эВ, в то время как в области 9-13 эВ свечение 2,6 эВ, связанное с цериевыми примесными центрами, возбуждается даже более эффективно, чем собственное свечение катионов ~3,95 эВ. Фотоны 16-20 эВ создают горячие носители (электроны проводимости или дырки), энергии которых уже достаточно для создания вторичных электронных возбуждений. В нашем случае для возбуждения ионов кислорода около Gd³⁺ нужны горячие носители с энергией 6,8-8,0 эВ. На вставке рис. З приведены спектры излучения, измеренные при возбуждении Gd₂SiO₅ фотонами 10,8 или 16,5 эВ при 8 К. В случае возбуждения фотонами 16,5 эВ эффективность Gd³+-свечения (полуширина полосы с максимумом ~3,95 эВ не превышает 0,15 эВ) относительно широкой полосы свечения 1,9-3,2 эВ удваивается.

Моноклинная кристаллическая решетка оксиортосиликата гадолиния имеет винтовую ось по направлению U с проходящими через нее слоями ионов Gd^{3+} , входящих в состав полиэдров с семью или девятью ионами кислорода (один из ионов кислорода наиболее близок к Gd^{3+}). Согласно рис. 3, эффективность возбуждения Gd^{3+} -свечения при 8 К высока в области энергий возбуждающих фотонов 6,8-8,0 эВ, связанной с передачей энергии возбужденных состояний кислорода ионам Gd^{3+} . При повышении температуры наблюдается резкое тушение свечения ~3,95 эВ и к 40 К свечение ослаблено в десятки раз (см. рис. 4). К сожалению, имеющиеся данные (отсутствие четкого

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\$

Рис. 4. Кривые теплового тушения Gd^{3+} -свечения 3,92 эВ при возбуждении Gd_2SiO_5 фотонами 7,2 эВ $(\nabla \nabla)$, 8,5 эВ (••) и 16,5 эВ (••).

12 =

плато в области T < 15 К) не позволяют уверенно утверждать о соответствии или несоответствии процесса теплового тушения люминесценции катионных экситонов формуле Мотта, обычно используемой для описания такого рода процессов в высокосимметричных кубических кристаллах (см., например, [5]). Отметим лишь, что тепловое тушение свечения 3,9 эВ с энергией активации ~ 0,15-0,20 эВ несколько зависит от энергии возбуждающих фотонов: 7,2, 8,5 или 16,5 эВ (рис. 4).

Важной характеристикой быстрых свечений в Gd₂SiO₅ является их длительность в нано- и микросекундном диапазонах. Такие свечения были изучены нами в спектральном диапазоне 1,7-5,2 эВ при 80 К при возбуждении монокристаллов Gd₂SiO₅ одиночными импульсами электронов (300 кэВ, ~3 нс). В качестве примера на рис. 5 приведены некоторые кривые затухания свечения, измеренные для разных областей спектра излучения. Затухание очень слабого свечения 5 эВ описывается экспонентой с t = 5 нс (т.е. на аппаратурном пределе разрешения). Как и в других широкощелевых оксидах импульс этого свечения соответствует внутризонной люминесценции, интенсивность которой практически не зависит от температуры измерения [11]. Свечения в области 3,9 и 4,0 эВ характеризуются $t_1 = 8$ нс и $t_2 = 77$ нс, но их интенсивность превышает уровень внутризонной люминесценции. По нашему мнению, это свечение соответствует излучательным переходам ⁶Р_J ® ⁸S_{7/2} в Gd³⁺, в сотни раз ослабленным тепловым тушением (см. рис. 4) и, соответственно, с сильно укоро-

Рис. 5. Кривые затухания свечения 2,6 эВ (кривая 1), 3,9 эВ (2) и 5 эВ (3), измеренные после возбуждения Gd_2SiO_5 импульсом электронов 300 кэВ длительностью 3 нс при 80 К.

ченным t. В области неэлементарной полосы свечения 2,2-3,2 эВ кинетика затухания импульсов свечения сильно замедляется и описывается двумя экспонентами, наблюдается слабое разгорание свечения. Для 2,6 эВ затухание описывается $t_1 = 18$ нс и $t_2 = 62$ нс.

Для общего рассмотрения излучательных и безызлучательных переходов в катионной подрешетке Gd₂SiO₅ и Gd₂SiO₅:Ce³⁺ мы использовали обобщенную схему электронных переходов в ионах Gd³⁺ для широкощелевых фторидов (LiGdF₄, GdF₃ и др.), предложенную в [12] и использованную затем для фосфора CaSO₄:Gd³⁺ [7]. Согласно этой схеме для разрешенных электронных переходов 4f⁷ ® 4f⁶5d¹ в поглощении ионов Gd³⁺ требуется необычно большая энергия 10-11 эВ. Наряду с обизлучательными ратными переходами $4f^{6}5d^{1} \otimes 4f^{7}$ во фторидах имеют место $4f^{7} \otimes 4f^{7}$ переходы в красной области спектра (⁶G₁ ® ⁶I₁ и ${}^{6}G_{I} \otimes {}^{6}P_{I}$), а также излучательные переходы с ⁶D_J, ⁶I_J и ⁶P_J в основное состояние гадолиния ⁸S_{7/2}. Из данных рис. 1 и 2 следует, что в области электронных переходов ⁸S_{7/2} ® ⁶I₁ и ⁸S_{7/2} 2 ^{®6}D₁ в ионах Gd³⁺ осуществляется и эффективное возбуждение поглощающих в этой области примесных ионов Ce³⁺. Gd³⁺-свечение ~3,95 эВ приходится на область глубокого провала в спектре поглощения Се³⁺-центров. В Gd_{2} Lu SiO₅ с x = 0,74 область расщепленных в низкосимметричных полях 5d-уровней Ce³⁺ смещается, вызывая тем самым существенную реабсорбцию свечения Gd³⁺ в области 3,9-4,0 эВ. Как известно (см., например, [5]), в широкощелевых кристаллах кроме прямого возбуждения примесных центров люминесценции имеет место и создание электронных возбуждений на окружающих примесный центр ионах. Аналогом таких околопримесных возбуждений являются возбужденные состояния ионов кислорода, близких к катионам Gd^{3+} в Gd_2SiO_5 . Энергия этих возбужденных состояний кислорода превышает ⁶Р_J ⁶І_J, ⁶D_J и другие 4f⁷ уровни Gd³⁺. По нашему мнению, широкая полоса возбуждения для свечения катионных экситонов ~3,9 эВ в области 6,5-8,0 эВ как раз соответствует поглощению соседних с Gd³⁺ ионов кислорода. Эта общая схема заслуживает дальнейшего экспериментального и, особенно, теоретического анализа.

Настоящая работа выполнена при поддержке Научного фонда Эстонии (грант 7825) и программы Евросоюза «EC Research Infrastructure Action within the FP6 Program through the Contract RII3-CT-2004-506008 (IA-SFS)».

ЛИТЕРАТУРА

1. Lecoq, P., Annenkov, A., Gektin, A., Korzhik, M., Pedrini, C. Inorganic Scintillators for Detector Systems. Physical Principles and Crystal Engineering. Berlin:Springer, 2006.

2. Иванов В.Ю., Пустоваров В.А., Кирм М., Шлыгин Е.С., Ширинский К.И. Перенос энергии в кристаллах $Gd_{2}SiO_{5}$ -Се, $Y_{2}SiO_{5}$ -Се и $Be_{2}La_{2}O_{5}$ -Се при селективном ВУФ- и остовном облучении // ФТТ. 2005. Т. 47. С. 1435-1439.

3. Иванов В.Ю., Шлыгин Е.С., Пустоваров В.А., Мазуренко В.В., Шульгин Б.В. Ширинский К.И. Собственная люминесценция редкоземельных оксиортосиликатов // ФТТ. 2008. Т. 47. С. 1628-1634.

4. Bondar' V.G., Krivoshein V.I. Martynov V.P., Nagornaya L.L., Ryzhikov V.D. Optimization of thermal conditions in growing of GSO:Ce crystals by Czochralski technique // Functional Materials. 2005. V. 12, P. 196-200.

5. Лущик Ч.Б., Лущик А.Ч. Распад электронных возбуждений с образованием дефектов в твердых телах. М.: Наука, 1989.

6. Nakonechnyi S., Korner T., Lushchik A. Lushchik Ch., Babin V., Feldbach E., Kudryavtseva I., Liblik P., Pung L., Vasil'chenko E. Low-temperature excitonic, electron-hole and interstitial-vacancy processes in LiF single crystals // J. Phys.: Condens. Matter. 2006. V. 18. P. 379-394.

7. Kudryavtseva I., Liblik P., Lushchik A., Maaroos A., Vasil'chenko E., Azmaganbetova Z., Nurakhmetov T., Toxanbayev B.. Electron-hole and excitation processes in $CaSO_4$ doped with Gd^{3+} , Tb^{3+} and Dy^{3+} // J. Lumin. 2009, in print.

8. Shimizu S., Ishibashi H., Ejiri A., Kubota S. Luminescence decay of Ce-doped GSO under excitation of VUV photons with energy less than 30 eV at room temperature // Nucl. Instr. Meth. Phys. Res. A. V. 486. P. 490-495.

9. Lushchik A., Savikhin F., Tokbergenov I. Fast intrinsic emissions in wide-gap oxides under electron irradiation. // Radiat. Eff. Defects Solids. 2002. V. 157, P. 537-543.

10. Zimmerer G. Status report on luminescence investigations with synchrotron radiation at HASYLAB. // Nucl. Instr. Meth. Phys. Res. A. 1991. V. 308. P. 178-186.

11. Вайсбурд Д.И., Сёмин Б.Н. Внутризонная радиолюминесценция диэлектриков. // Изв. АН СССР. Сер. физическая. 1992. Т. 56. С. 103-112.

12. Kirm M., Stryganyuk G., Vielhauer S., Zimmerer G., Makhov V.N., Malkin B.Z., Solovyev O.V., Abdulsabirov R.Yu., Korableva S.R. Vacuum-ultraviolet 5d-4f luminescence of Gd³⁺ and Lu³⁺ ions in fluoride matrices. // Phys. Rev. B. 2007. V. 75. 075111.

B. Toxanbayev, E. Vasil'chenko, A. Zhunusbekov, A. Lushchik, V. Nagirnyi, T. Nurakhmetov, F. Sahikhin, «Luminescence of cation excitons in Gd₂SiO₅ crystals».

Резюме

 Gd_2SiO_5 және Gd_2SiO_5 :Се³⁺ монокристаллдарды энергиялары 10 кэВ электрондармен, 4-20 эВ фотондармен және 300 кэВ импульстық наносекундтық электрондармен 5-80К температура аралығында қоздырылған кездегі катиондық экситондардың (Gd³⁺) және Се³⁺-жарық шығару орталықтарының табиғаты зерттелді. Gd_2SiO_5 кристаллындағы Gd³⁺ катионының энергетикалық күйлерінің f>f электрондық ауысыларымен анықталатын

^{13 &}lt;sup>8</sup>S_{7/2} негізгі күйінен ⁶Р₁ қозған күйіне (жұтылу аймағы ~ 4 эВ), ⁶І₁ (~4,5 эВ), ⁶D₁ (~5 эВ) және керісінше, қозған күйден негізгі күйіне көшуіне сәйкес келетін жұтылу және шығару спектрлері анықталды. Егер кристаллдағы Gd³⁺ ионын оның жанындағы қозған күйдегі оттегі немесе электрон-кемтіктондық меншікті қозулар энергияларын беріп қоздыратын болса 3,95 эВ сәйкес