УДК 669.21/23.053/4

Б.К. КЕНЖАЛИЕВ, Н.А. ЗАХАРОВА, Е.И. ПОНОМАРЕВА, З.Д. ДОСЫМБАЕВА

УКРУПНЕННО-ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ ОЧИСТКИ РАСТВОРОВ ОТ ПРИМЕСНЫХ ЭЛЕМЕНТОВ С ПОСЛЕДУЮЩИМ ИЗВЛЕЧЕНИЕМ СЕРЕБРА

Представлены результаты исследований процесса предварительной очистки растворов слабоосновными ионитамим от примесных элементов, сорбции благородных металлов и селективной десорбции серебра из насыщенных среднеосновных анионитов.

В последнее время мировой спрос на серебро ежегодно увеличивается на 4-5 % [1], это стимулирует разработку новых и совершенствование существующих технологий для комплексной переработки минерального и техногенного серебросодержащего сырья. Запасы серебра в Казахстане составляют 13,4 тыс. т, а база запасов – 44,5 тыс. т [2].

Основная часть серебра извлекается при комплексной переработке свинцово-цинковых и медных руд. Серебро практически всегда присутствует в золотосодержащих рудах и извлекается из них попутно с золотом, а также из отходов металлургического и химического производств. В Казахстане установлено более 250 собственных и комплексных серебряных рудных объектов с содержанием серебра от 20 до 200 г/т [1]. Применение ионообменных технологий при извлечении серебра из растворов цианидного выщелачивания сырья является перспективным направлением, которое позволит увеличить добычу серебра при относительно небольших материальных затратах [3].

На основании проведенных теоретических и прикладных исследований [4-9] была усовершенствована и проверена в укрупненно-лабораторном масштабе технология очистки растворов от примесных элементов, сорбции и десорбции серебра. Объектом исследований являлись продуктивные технологические растворы цианидного выщелачивания сульфидной акбакайской (1), окисленной васильковской (2) руд и акбакайского флотоконцентрата (3). В качестве сорбентов использовали поликонденсационные аниониты среднеосновный Ионал А-7, низкоосновный Ионал А-1 и полимеризационный АМ-2Б. Сорбционные исследования проводили на анионитах в ОН-форме, в статическом режиме при разном объемном соотношении смолы и раствора и в динамическом режиме в масштабе укрупненнолабораторных испытаний.

Концентрации металлов в растворах, сорбционных фильтратах и образцах смол (с предварительным озолением) определяли атомно-адсорбционным методом на спектрофотометре «ОРТІМА – 2000». Пробы анионитов после насыщения и десорбции выборочно анализировали методом ИК-спектроскопии. Инфракрасные спектры образцов анионитов получены на приставке диффузионного отражения «Avatar 370 CsI» ИК-Фурье спектрометра в спектральном диапазоне 4000–225 см⁻¹.

В таблице 1 приведен химический состав технологических растворов выщелачивания руд (1, 2) и флотоконцентрата (3). Остаточные концентрации цианид-ионов в растворах выщелачивания руд составляют 50 мг/дм³, pH=10,0. Концентрации большинства компонентов в акбакай-

N⁰		Концентрации элементов в технологических растворах, мг/дм ³										
p-pa	Au	Ag	Cu	Zn	Со	Ni	Fe	Mn	As _{общ}	As ^{III}	Sb	S _{общ}
1	2,0	0,21	9,0	2,4	0,46	0,35	0,35	0,02	14,4	1,3	2,1	365
2	2,0	0,22	32,6	3,1	0,50	0,32	1,2	1,2	390	4,2	3,25	430
3	10,0	6,4	10,4	2,1	1,3	0,40	5,3	0,2	6,1	4,3	16,4	185

Таблица 1. Химический состав технологических растворов

_____ 22 _____

Обозначение кривых: 1 – Au; 2 – Ag; 3 – Cu; 4 – Zn; 5 – Ni; 6 – Co; 7 – Fe Рис. 1. Степень сорбции цианидных комплексов металлов из раствора выщелачивания акбакайской руды анионитами Ионал А-7 (а), АМ-2Б (б) и Ионал А-1 (в)

ском (1) и васильковском (2) растворах имеют близкие значения, кроме меди, железа, марганца и мышьяка. В акбакайском растворе концентрация As_{общ} – 14,4 мг/дм³, в васильковском – 390 мг/дм³ вследствие выщелачивания окисленных форм мышьяка в виде арсенат-ионов.

Из раствора выщелачивания акбакайской руды анионитом Ионал А-7 (рисунок 1а) наиболее эффективно сорбируются никель, золото, медь, цинк и кобальт со степенью сорбции 99–95 % за 8 ч, в меньшей степени (76 %) сорбируются серебро и железо.

На анионите АМ-2Б (рисунок 1б) за 8 ч контакта степень сорбции золота и никеля составляет около 90%, меди, цинка и серебра – в пределах 65–70 %, кобальта и железа – 30% и 23% соответственно. Сорбция благородных металлов среднеосновными анионитами сопровождается высоким извлечением в сорбенты сопутствующих металлов: Ионал А-7 сорбирует свыше 90 % цветных металлов, АМ-2Б – более 70 % никеля, цинка, меди и 30 % кобальта. Низкоосновный анионит Ионал А-1 (рисунок 1в) слабо сорбирует золото и серебро, но эффективно – примесные металлы: 90 % цинка, около 70 % никеля и железа, свыше 40 % меди и кобальта.

Аналогичная картина получена на анионитах Ионал А-7, АМ-2Б и Ионал А-1 при сорбции из васильковского технологического раствора, с той только разницей, что степень сорбции серебра

N⁰	Марка		СОЕ анионитов по компонентам, мг/г								
р-ра	ионита	Au	Ag	Cu	Zn	Ni	Со	Fe	As _{общ}	Sb	S _{общ}
	АМ-2Б	2,01	0,16	2,56	2,06	0,36	0,17	0,07	0,8	0,01	21,4
1	Ионал А-7	2,26	0,19	10,8	2,87	0,43	0,53	0,23	1,8	0,03	22,6
	Ионал А-1	0,048	0,01	4,44	3,36	0,28	0,24	0,20	1,4	0,02	19,3
2	АМ-2Б	2,14	0,17	7,25	2,02	0,28	0,14	0,10	2,9	0,01	22,5

Таблица 2. СОЕ анионитов, насыщенных из технологических растворов выщелачивания руд

среднеосновными анионитами ниже по сравнению с акбакайским раствором из-за более высокой концентрации в васильковском растворе конкурентоспособных по отношению к серебру цианокомплексов меди. Ионал А-1 из васильковского раствора также практически не сорбирует серебро и золото, но эффективно поглощает сопутствующие анионы.

В таблице 2 приведены величины статической обменной емкости (СОЕ) по компонентам анионитов, насыщенных из технологических растворов выщелачивания акбакайской (1) и васильковской (2) руд.

Емкость анионитов по благородным металлам при сорбции из акбакайского раствора составляет, мг/г: Ионал А-7 -2,45; АМ-2Б- 2,17; Ионал А-1- 0,05; или в процентах от суммарной емкости этих анионитов по всем компонентам: Ионал А-7 – 5,7 %; АМ-2Б – 7,3 %; Ионал А-1 – 0,2 %. Емкость по благородным металлам анионита АМ-2Б, насыщенного из васильковского

технологического раствора, составила 2,31 мг/г или 6,1 % от суммарной емкости по всем компонентам. Ионы мышьяка и сурьмы слабо сорбируются всеми исследуемыми ионитами. Содержание мышьяка в пробах насыщенного АМ-2Б из акбакайского и васильковского технологических растворов составило 0,8 мг/г и 2,9 мг/г, что в пересчете на степень сорбции мышьяка из этих растворов соответствует 4,6 % и 0,6 %. Для сурьмы этот показатель еще ниже. Суммарная емкость анионитов по роданид-, сульфат- и тиосульфат-ионам составляет от 19,3 до 22,6 мг/г по общей сере.

В статическом режиме проведены эксперименты по сорбции металлов из раствора цианидного выщелачивания акбакайского флотоконцентрата (3) исследуемыми анионитами за 16 ч контакта в зависимости от соотношения объема раствора к объему смолы, равному 125:1; 250:1; 500:1 (рисунок 2).

Обозначение кривых: 1 – Au; 2 – Ag; 3 – Cu; 4 – Zn; 5 – Ni; 6 – Co; 7 – Fe Рис. 2. Зависимость СОЕ анионитов Ионал А-7 (а), АМ-2Б (б) и Ионал А-1 (в) по металлам от соотношения Vp:Vc при сорбции из раствора выщелачивания акбакайского флотоконцентрата

В присутствии значительного количества сопутствующих элементов с увеличением соотношения Vp:Vc емкость среднеосновных анионитов по золоту, а анионита AM-2Б и по серебру увеличивается значительно быстрее, чем по большинству примесных металлов. Величины СОЕ анионита Ионал A-1 по серебру (<0,5 мг/г) и золоту (2 мг/г) с увеличением Vp:Vc практически не меняются, а по примесным – растут, что является основанием выбора Ионала A-1 для предварительной очистки серебро-золотосодержащих растворов от примесных элементов.

Сорбционное поведение анионов цианидных комплексов металлов в растворе выщелачивания флотоконцентрата и в технологических растворах выщелачивания руд при сорбции исследуемыми анионитами идентично. Сорбция металлов на анионите АМ-2Б более растянута во времени, чем на Ионале А-7. Ионал А-7 вместе с золотом активно сорбирует примесные металлы, а серебро - всего на 40%. На анионите АМ-2Б кривая сорбции золота значительно опережает кривые сорбции примесных металлов, серебро сорбируется менее эффективно, чем золото, никель и цинк, но за 16 ч контакта степень сорбции серебра достигает 90 %. Низкоосновный анионит Ионал А-1 активно сорбирует примесные металлы и крайне слабо - серебро и золото, которые в процессе дальнейшей сорбции вытесняются анионами цианидных комплексов сопутствующих металлов. Емкость анионитов по сумме серебра и золота составила, мг/г: Ионал А-7 – 10,1; АМ-2Б – 19,4; Ионал А-1 – 2,28; или соответственно 22,9; 36,3 и 7,1 % от суммарной емкости данных анионитов по исследуемым компонентам, мг/г: Ионал А-7 – 44,1; АМ-2Б – 53,5; Ионал А-1 – 32,6. В динамическом режиме на Ионале А-1 происходит вытеснение сорбированных анионов серебра и золота цианидными комплексами цветных металлов до содержания менее 0.1 мг/г.

Проведены укрупненно-лабораторные испытания в динамическом режиме на технологическом растворе выщелачивания акбакайского флотоконцентрата с предварительной очисткой от примесных элементов, сорбции и десорбции серебра. Очистку раствора проводили на анионите Ионал А-1, загруженном в две последовательные колонки по 20 см³, в третьей колонке из фильтрата извлекали благородные металлы анионитом Ионал А-7 (10 см³) со скоростью подачи раствора 0,1 дм³/ч. Полученные результаты представлены в таблице 3, в элюатах указаны усредненные значения концентраций металлов, для сравнения приводятся данные по сорбции и десорбции металлов Ионалом А-7 без очистки раствора (б/о).

Очистка раствора выщелачивания флотоконцентрата Ионалом А-1 позволила на 98,7 % снизить содержание примесных металлов в фильтрате, направляемом на сорбцию благородных металлов Ионалом А-7. Емкость Ионала А-7 по серебру из очищенного раствора увеличилась в 19,8 раза и составила 31,7 мг/г, по золоту – 49,7 мг/г, а по сумме благородных металлов 81,4 мг/ г, что в 8 раз выше, чем без очистки раствора. Кроме цианидных комплексов сопутствующих металлов Ионал А-1 сорбирует серосодержащие анионы, очищая раствор от роданид-, сульфат- и тиосульфат-ионов.

Элюацию примесных элементов из Ионала А-1 [10] и серебра из Ионала А-7 осуществляли в течение 8 ч при комнатной температуре со скоростью 1 уд. об./ч смесью растворов тетрацианоцинката натрия и цианида натрия состава, г/ дм³: Zn-2; CN-6. Степень десорбции серебра 5тью уд. об. составила 90,0 %, за 8 ч - 99,0 %. Средняя степень десорбции цианидных комплексов сопутствующих металлов, анионов серы и мышьяка из Ионала А-1 – 98,0 %. Десорбцию золота из Ионала А-7 осуществляли по известной методике [11] 0,5 М раствором цианида цинка при температуре 55°C в течение 24 ч со скоростью 0,5 уд. об./ч. В результате получили очищенные от примесных элементов отдельные серебро- и золотосодержащие элюаты с концентрацией в богатых фракциях: серебра 3350 мг/ дм³ (1-3 уд. об.), золота 2385 мг/дм³ (1-5 уд. об.) (таблица 3).

Известно, что применение тиомочевинной схемы десорбции благородных металлов из анионита АМ-2Б и его аналогов, включающей обработку насыщенного анионита 3 % раствором серной кислоты для десорбции примесных металлов, приводит к значительным потерям серебра [12]. Предварительная очистка серебро-золотосодержащих растворов Ионалом А-1 позволяет сконцентрировать благородные металлы на среднеосновном анионите, а применение слабого цинк-цианидного элюента для десорбции приAu

10.0

9.95

< 0,01

3,0

5,0

1637

8,0

Растворы

Исходный раствор А-1, фильтрат 1

А-7, фильтрат 2

Элюат Ад Элюат Аи

Элюат примес. Ме

-									
Концентрации металлов в растворах, мг/дм ³									
Ag	Cu	Zn	Co	Ni	Fe	Mn	∑пр		
6,4	10,4	2,1	1,3	0,4	5,3	0,2	19,7		
6,35	0,2	0,01	0,01	0,01	0,01	0,01	0,25		
<0,01	0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,1		
3,0	630	920	80	24	330	12	1076		
1560	9,0	1050	2,5	2,5	2,5	1,5	18,0		
8.0	5.0	28800	< 0.5	< 0.5	2	< 0.5	8.0		

Таблица 3. Результаты укрупненно-лабораторных испытаний

80 1000 70 30 15 935 Элюат Ад А-7 б/о 0.5 560 260 Элюат Аи А-7 б/о 260 0,6 5.3 31900 0,1 0.05 0.2 0,02 5.7 Содержание металлов в насыщенных ионитах, мг/г Иониты Au Cu Zn Co Ni Ag Fe Mn ∑пр 0,08 15,9 2,0 30,4 A-1 0,08 3.3 0.6 8.3 0.3 A-7 49.7 31,7 0,95 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 1.2 А-7 б/о 8,5 1,6 11,3 2,4 1,4 0,6 1.8 0,2 20,0 Содержание металлов в ионитах после десорбции, мг/г Иониты Au Cu Zn Co Ni Fe Mn Ag ∑пр A-1 0,2 36,7 < 0,1 < 0,1 0,2 <0,1 < 0,7 н/о н/о A-7 0,5 0,3 < 0,1 80 < 0,1 < 0, 1< 0,1 <0,1 <1,3 А-7 б/о 0.1 0.02 0.1 80 < 0.1 < 0.1 < 0.1 < 0,1 < 0.5

месных элементов из Ионала А-1 и серебра из Ионала А-7 – исключить потери серебра при десорбции и получить очищенные от примесей отдельные элюаты серебра и золота.

За счет увеличения концентрации серебра в товарном элюате, невысокой стоимости поликонденсационных смол, сокращения потерь серебра и материальных затрат при десорбции ориентировочный экономический эффект по серебру, рассчитанный по цене серебра 11,5 долл./унц., при переработке 100 тысяч тонн акбакайского флотоконцентрата с содержанием, г/т: Au - 25,0; Ag -19,4 - составит около 580 тысяч долларов США.

Выводы:

1. На технологических растворах цианидного выщелачивания золотосодержащих руд и флотоконцентрата показано, что Ионал А-1, активно сорбируя примесные элементы, проявляет инертность по отношению к серебру и золоту и может применяться для предварительной очистки серебро-золотосодержащих растворов. Емкость насыщенных в технологических растворах выщелачивания руд анионитов Ионал А-7 и АМ-2Б по благородным металлам составляет 5 - 7 % от их суммарной емкости по всем компонентам.

2. На основании проведенных укрупненнолабораторных испытаний предложена технологическая схема извлечения серебра из растворов цианидного выщелачивания руд и концентратов, позволяющая исключить потери серебра при сорбции и десорбции. Проведение предварительной очистки растворов от примесных элементов Ионалом А-1 позволяет увеличить емкость среднеосновных анионитов по благородным металлам в 8 раз. Определены оптимальные параметры по сорбционному извлечению серебра из цианидных растворов с предварительной очисткой от примесных элементов с последующим извлечением серебра..

ЛИТЕРАТУРА

1. Парилов Ю. Серебряный потенциал // Промышленность Казахстана. 2005. №6. – С. 32-35.

2. Алшанов Р.А. Казахстан на мировом минерально-сырьевом рынке: Проблемы и их решения. Институт мирового рынка. Алматы. 2004. с.

3. Котляр Ю.А., Меретуков М.А., Стрижко Л.С. Металлургия благородных металлов. – М.: Руда и металлы, 2005. Т. 1. – 432 с.

4. Atanova O.V., Akhmetova K.Sh., Ponomaryova E.I., Kenzhaliev B.K., Zakharova N.A. Technology of ion-exchange resin regeneration // «Bridging the Gap between Minerals and Matrials» 15-18. 12. 2008, Cairo, Egypt.

5. Захарова Н.А., Ахметова К.Ш., Кенжалиев Б.К., Ерденова М.Б., Досымбаева З.Д. Влияние различных факторов на сорбируемость серебра из цианистых растворов // Сб. докл. междунар. конф. «Металлургия XXI века – состояние и стратегия развития». – Алматы. – 2006. – С. 297-301.

6. Захарова Н.А., Ахметова К.Ш., Ерденова М.Б. Кинетика сорбции цианидных комплексов серебра среднеосновными анионитами // Комплексное использование минерального сырья. – 2007. – № 6. – С. 50-55.

7. Захарова Н.А., Пономарева Е.И., Ахметова К.Ш., Досымбаева З.Д. Сорбционное поведение мышьяка в цианидно-щелочных растворах// Комплексное использование минерального сырья. – 2007. – №1. – С. 26-34.

8. Захарова Н.А., Ахметова К.Ш., Атанова О.В., Досымбаева З.Д., Аманжолова Л.У. Усовершенствование существующего способа десорбции сопутствующих металлов из насыщенного золотом анионита АМ-2Б // Вестник КазН-ТУ. – 2007. – №5 – С. 130-135. 9. Захарова Н.А., Кенжалиев Б.К., Пономарева Е.И., Досымбаева З.Д., Ерденова М.Б., Толбаев Б.О. Разработка эффективной технологии извлечения серебра из растворов цианидного выщелачивания серебро-золотосодержащего сырья // Междунар. науч.-практич. конф. «Металлургия цветных металлов. Проблемы и перспективы». – Москва. – 2009. – С. 193-195.

10. Предпатент РК № 16683 Способ очистки смолы, насыщенной из цианистых растворов и пульп, от цветных металлов и железа / Кенжалиев Б.К., Ахметова К.Ш., Атанова О.В., Захарова Н.А., Досымбаева З.Д., Тулешев Т.К. опубл. 15. 12. 2005. – Бюл. №12. – С.149.

 Итоги науки и техники. Металлургия цветных металлов. - М.: ВИНИТИ, 1987. - Т. 17, С. 23 - 33.

12. Барченков В.В. Основы сорбционной технологии извлечения золота и серебра из руд. – М.: Металлургия, 1982. – 128 с.

Резюме

Алдын ала ерітіндіні әлсіз негізді анионит арқылы қоспа элементтерден тазартудың, асыл металдарды қаныққан орта негізді анионитке сорбциалау мен күмісті десорбциалау арқылы бөліп алудың зерттеу нәтижесі көрсетіліп, оңтайлы параметрлері анықталды.

Summary

Optimal parameters of solutions and low-basic anionites processing to separate impurity elements, to provide precious metals sorption and selective silver desorption from saturated medium-basic anionites were identified in this paper referred to recent research data.

Казахстанско-Британский Технический университет. г. Алматы;

АО «Центр наук о Земле, металлургии и обогащения», г. Алматы Поступила 27.04.09