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RESEARCH OF MULTIPERIODIC SOLUTIONS OF PERTURBED
LINEAR AUTONOMOUS SYSTEMS WITH DIFFERENTIATION
OPERATOR ON THE VECTOR FIELD

Abstract. A linear system with a differentiation operator D with respect to the directions of vector fields of the
form of the Lyapunov's system with respect to space independent variables and a multiperiodic toroidal form with
respect to time variables is considered. All input data of the system multiperiodic depend on time variables or do not
depend on them. The autonomous case of the system was considered in our early work. In this case, some input data
received perturbations depending on time variables. We study the question of representing the required motion
described by the system in the form of a superposition of individual periodic motions of rationally incommensurable
frequencies. The initial problems and the problems of multiperiodicity of motions are studied. It is known that when
determining solutions to problems, the system integrates along the characteristics outgoing from the initial points,
and then, the initial data is replaced by the first integrals of the characteristic systems. Thus, the required solution
consists of the following components: characteristics and first integrals of the characteristic systems of operator D,
the matricant and the free term of the system itself. These components, in turn, have periodic and non-periodic
structural components, which are essential in revealing the multiperiodic nature of the movements described by the
system under study. The representation of a solution with the selected multiperiodic components is called the
multiperiodic structure of the solution. It is realized on the basis of the well-known Bohr's theorem on the connection
of a periodic function of many variables and a quasiperiodic function of one variable. Thus, more specifically, the
multiperiodic structures of general and multiperiodic solutions of homogeneous and inhomogeneous systems with
perturbed input data are investigated. In this spirit, the zeros of the operator D and the matricant of the system are
studied. The conditions for the absence and existence of multiperiodic solutions of both homogeneous and
inhomogeneous systems are established.

Keywords: multiperiodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector field,
perturbation.

1. Introduction. The foundations of the method used in this note were laid in [1, 2], which were
further developed in [3-14] and applied to the study of solutions different problems in the partial
differential equations [15, 16]. These methods with simple modifications extend to the study solutions of
problems of the differential and integro-differential equations of different types [1-16], in particular,
problems on multi-frequency solutions of equations from control theory [17]. Many oscillatory
phenomena are described by systems with a differentiation operator with respect to toroidal vector fields,
and new methods based on the ideas of the Fourier [18], Poincaré-Lyapunov and Hamilton-Jacobi
methods [19, 20] appear to establish their periodic oscillatory solutions. The methods of research for
multiperiodic solutions are successfully combined by methods for studying solutions of boundary value
problems for equations of mathematical physics. Elements of the methods of [1, 2] can easily be found in
[21-25], where time-oscillating solutions of boundary value problems are studied by the parameterization
method.
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As noted above, the considered system of partial differential equations along with multidimensional
time contains space independent variables, according to which differentiation is carried out to the
directions of the different vector fields. The autonomous case of this system was considered in [15, 16],
where differentiation with respect to time variables was carried out in the direction of the main diagonal of
space, and the free term of the system was independent of time variables. In this case, these parameters of
the systems received perturbations depending on time variables. In the note, the method for studying
multiperiodic structures of general and multiperiodic solutions is developed, the conditions for the
existence of a multiperiodic solution are established, and its integral representation is given.

We consider the system of linear equations

Dx=Ax+f(r,t,§) (1.1)

D:i+ a,g + V]é’+g,i, (1.2)
ot ot o¢
. t=(t, ..t )eRx. . xR=R".C=(¢,, ... & )e R,

=) J=TLR =, =&, n) e R[5 |=JE +17 <6,/ =11}

with differentiation operator

where TE(—oo +oo)=R

O =const >0 are independent variables with areas of change;gz i,_,_, i and

or \or or,
i:[ ¢ 5 5 g ], 9 = 0 , 9 , jzl,_lare vector  differentiation  operators;
o¢ \o¢, " ac, ) ag, \og” an,

[ =diag ([2,...,[2) is a matrix with /-blocks, [
14 =(V1, . Vl) is a constant vector, v I =diag (V1]z>---:Vz]z):
a=(a(r1),.,a (r,0)=a(z,1), g =(g,(),.., g, )= g(r) are vector functions, ( , > is the
sign of the scalar product of vectors; A is a constant 72X #-matrix, f = £(7,7,{) is H-vector-function
of variables (7,7, )€ Rx R" x R}
The vector function x(7,7,¢) is called (8, @) -periodic with respect to (7,¢) if the identity
x(t+0,t+qw,8)=x(1,1,{), (1,1, {)e RxR" xR} qe 7",

was fulfilled, where Z" = Z X...Xx Z, Z is the set of integers, @ = (@,,..., @, ) is the vector-period,

, 1s symplectic unit of the second order,

and the periods @, = g, ,,..., @, are rationally incommensurable positive constants:
q,0 +q.0, %0, q,,q9,€Z,(j, k=0,m).

The motion described by a (8, ®) -periodic with respect to (7,¢) function x = x(7,7,¢ ) is called a

multiperiodic oscillation.
The main objective of this note is to determine the multiperiodic structures of solutions of the initial-
multiperiodic problems associated with the system (1.1) - (1.2).
The objective was partially been touched upon by the authors in [15, 16], when the problem of
multiperiod solutions of the autonomous system of the form (1.1) - (1.2) was considered, where time
variables 7,7 did not explicitly enter.

2. Multiperiodic structure of zeros of the differentiation operator 1D . We introduce the equation
Du=0 (2.1)
with the required scalar function #4 = u(r 1.8 ) ,where D) is the differentiation operator with respect to
(7,2,{) ofthe form (1.1).

— ) ——
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The solutions of equation (2.1) are called the zeros of the operator 1) .
Suppose that 1) the vector function a(z,f) has the property of smoothness with respect to

(7,1) € Rx R" oforder(0,¢) =(0,1,...,1):
a(r+0,t+qo)=a(r,t)e C7(RxR"), qe Z", (2.2)
2) positive constants V, ..., V, rationally incommensurable:
qv,+qv, %0, ¢’ +q;#0, q.q,€Z,(i, j= 0.0), (2.3)
therefore, numbers o, = 27T V;I, J= ﬂ are also incommensurable.
3) vector-functions g, (T ) = ((Dj (1), v, (r )), J= 1,_[ are continuous and ,Bj -periodic:
g(+8)=g,)eC(R), j=T11 24)
where &, k = 1,_[ and ﬂj, J= ﬂ are incommensurable positive constants.

It follows from condition (2.2) that the vector field

dt
d_r = a(r,t) 2.5
determines the characteristic
t=A(r,2°,1"), 2.5Y
emanating from any initial point ( 7’ 1 ° ) € Rx R"”, and moreover, it has the properties:
1°=A(z’,1,1), (2.5
A, " A", )= A", 7,1), T',7" € R, (2.5%
A" +0,7+0.t+qw)=Ar",t.) +qo, ge Z", (2.5%
DV(A(z°,7,0))=0,V(1)e C(R"). 2.5%
Obviously, 4 =V (ﬂ(T 0 ,T,1 )) satisfies the initial condition
ul_, =v(t)e C(R™) Q.1)

Properties (2.52) - (2.5°) of the characteristic (2.5") of the vector field (2.5) are known from [2]. Hence,
we will not dwell on their justification.
The solution

u(ro,r,t)z v(ﬂ(ro,r,t)) (2.6)
of the problem (2.1) - (2.1") is called the zero of the operator /) with the initial condition (2.1').
Lemma 2.1. Let condition (2.2) be satisfied. Then under the condition

v(t+qo)=v()e Cfe)(R’") qgeZ” (2.7
the zeros (2.6) of the operator 1D with the initial data (2.1') have the multiperiodicity property of the form
u(t’+0,1+0,t+qo)=u(t’,1,1),qe 7" 2.8)

The proof of identity (2.8) follows from the structure of zero (2.6), property (2.5*) which is a
consequence of condition (2.2), and from condition (2.7).

Note that property (2.8) represent the diagonal @-periodicity u(r 0, 7,1 ) with respect to (T 0, T ) and
@ -periodicity with respect to 7 .

In particular, when a function Z(T 0 ,T,1 ) is B-periodic with respect to 7 or T 0 , then the zeros (2.6)
of the operator /) under the conditions of the lemma are (6, @) -periodic with respect to (7,7).
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The vector fields
b, _ I =11 2.9
dT _Vj Zé/j+gj(r)7.]_ > ( : )
in scalar form have the form
L=—vn +0,(7),
JtJ J

dr (2.10)

Uy , T

dr] =v,& +y (r), j=11

Obviously, the matricants /7 ; (1), j= L_l of the systems (2.10), and, consequently, the systems (2.9),
are determined by periodic relations

cosv,r —sinvz) = —
Z(r)=] . , j=L1 (2.11)
sinv,z  cosv,t

with periods &, =27 V;l, J= fl . The conditions
det|Z (B)-Z (0)]=0, j=11. 2.12)
are satisfied by virtue the incommensurability ¢, and ,Bj . Indeed
det|Z,(B8)-Z,(0)|=2(1-cosv,B3,)=0.
since ﬂj —q.,0,# 0, j=11.
Then systems (2.9) allow for ,Bj -periodic solutions

+f;

= & 1 — . I 7
@)=z @+ p)-7' @] [2'(5)g,(s)ds, j =T, 2.13)
Consequently, the general solutions ¢ ; of the systems (2.9) have the form
g, :Zj(r—ro)[gf—zj(ro)]Jr zj(r), j=11, (2.14)
where the matricants Z ; (T ), j= 1,_1 and solutions z, (7), j= 1,_1 have periodicity properties
Zeva)=2,) j=11, 2.15)
(e+p)=z20) j=11 (2.16)

We must introduce new time variables s, O, J =1,/ and space variables h]., J=1,1 related by

relations
0 0 0 0 0 0 .17
hj(sj =5,50,6, 7 Zj): Zj(sj 9, )[é’j N Zj]+ Zj(o-j)> J=Ll1, (2.17)

in order to represent solutions (2.14) using periodic functions with incommensurable periods
a,, B,,j=11, where Zj. =z, (sf), sj are the initial values of the variabless , J = L/

Obviously, the multiperiodic functions (2.17) present the solutions (2.14) under
o,=5, =7, S]Q = 7", moreover, they satisfy equations

oh. Oh. —

t+——=v ILh+g(oc,) j=1/ (2.18)
os, Jdo,
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with the initial conditions

h,

Ji

L. =¢, =Ll (2.18°)

By virtue of the properties (2.15) and (2.16) of the matricants Zj (7) and the solutions z, (7). the
functions (2.17) have the properties of multi-periodicity
o) _ 0y _ J =17
hj(sj Ta,,0,, é’j )_ hj(sj,O'j + 'Bj’ é’j )_ hj(sj,O'j, é’j )> J= 12 (2.19)
Thus, we obtained from systems of equations (2.9) to systems of equations (2.18) with initial

conditions (2.18°) by introducing new time variables.
We get the equations (2.9) and their solutions (2.14) from the systems of equations (2.18) - (2.18°) by

substitution o,=5 =1, S? =7’ conversely.
The close relationship between the functions ¢, = 0, (r) and hj = hj (sj, GJ.) of the form

do, dhlr,z) ©oh\s, o) Ohls, .o,
o,(e)=he.7) dz']: ]a(’r ): (8s. )+ éa. )

with o,=8,=7 leads to a transition from the differentiation operator /) to the differentiation operator

5:i+ a(rjz),g + e,2 + e,i + V]h+g(0'),i + @+%,i , (2.20)
or ot Os oo oh Os Oo Ooh

where s =(s,,...,8,), 0 =(0,,...,0,), e =(1,...,1) - [~vector,h=(h,,...,h), /flj Zhj(Sj,O'j),

].:r@_[ahl ahl] 6h_[6h1 ahl]

“Toas os,” " 0s,) 00 \oo, " oo,
Further, we obtain the characteristic
CzZ(T—TO)[CO—Z(TO)]+ z(z) (2.21)

of the matrix-vector equation

4o =vI{+g(r), (2.22)
dr

which is characteristic for equation (2.1) with respect to space variables, based on the coordinate data (2.9)
- 2.16). where Z(7)=diag [Z,(2)...., Z,(z)] 2(z)=(z,(2)...., z,(z)). ¢* =(Po E0).
We have the first integral
&’ =Z(r°—r)[§—z(r)]+ Z(TO)E ,u(ro,r,g’) (2.23)

of equation (2.22) from the equation of characteristic (2.21).
Therefore, we obtain the identity

D,u(ro,r,g’)zo, ,u(ro,ro,é’)zé’. (2.24)

u(ro,r,g’)z w(,u(ro,r,é’)), (2.25)

of equation (2.1) satisfying the initial condition

Then we have the solution

L=w()eCco(rR). 2.1

U

for any differentiable function w(g’ ) eC ée) (R : )
ow
Indeed, since Du = % Dy, by virtue of (2.24) we have Du= 0. Thus, (2.25) with the condition

(2.1") is the zero of the operator 1) .
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Further, we have a vector function

h(s -5, z(0), £° - z°)= Z(s - so)[§° - z(so)]+ z(o), (2.26)
satisfying the characteristic equation of the operator D of the form
oh Oh
—+—=vIh+g(o) (2.27)
os Oo
with the initial condition
h |U:s:s” = élo’

based on our analysis related to relations (2.17) - (2.19) for studying the multi-periodic structure of

characteristic (2.23), where g(0')= (g1 (O‘1 ),..., 2 (O‘l )), Z(O‘)= (Z1 (O‘1 ),..., Z, (O‘l )),
Z(s)z diag [Zl(s1 ),...,Zl(sl)], h=(h,..,h), h, = hj(sj ~-s,2(0)), ¢ - z(so)), Jj= L/,

oh _(oh Oh ) Oh _[ Oh Oh,
os os, " os, ) dc \do, oo, )

Obviously, by virtue properties (2.15). (2.16) and (2.19), the matrix Z(s) is periodic with period

o =(a,,...,a,), and the solution Z(O') with period £ = (f,,.... B,).
The first integral of the equation (2.27) is determined from the equation of characteristic (2.26) by the

relation
CO=h(s" = 5,2(s"). ¢ - z(0)).

h(s"=s,2(s°), & = 2())=0, h|

It's obvious that

=, (2.28)

U:S:SO

Moreover, we have

Dwlh(s’ - 5,2(s").¢ - 2(0))= Gg—(;) Dh(s" = 5,2(s"),& - 2(0))=0,
for any differentiable function w(é’ ) , by virtue of (2.28), at that

wlh(s® = s,2(s°), ¢ —z())|, =wl(¢)

o=5=8

LT(SO,S,O',C)= w(h (s0 —5,2(s°), ¢ - Z(O'))) (2.29)

is the zero of the operator 1) | thatunder ¢ = s =7 ¢, 5" =7 ¢ it becomes the u (To, T, é’) zero of

Thus,

the operator 1) , where € = (1,...,1) isa / -vector.

Lemma 2.2. Let conditions (2.3) and (2.4) be satisfied. Then the zeros (2.25) of the operator 1D with
the initial condition (2.1") have a multiperiodic structure of the form (2.29) with the vector function
(2.26), at that

ﬁ(so,s,o;g“ = (TO,T,C),

OB (2.30)
Wer' -er,2(21°),¢ - 2@ 1)) = (', 7.0).

Theorem 2.1. Let conditions (2.2) - (2.4) be satisfied. Then the solution u (‘[0, T,t,é’) of equation
(2.1) with the initial condition

u| L, =u'(t,)eC” (R"xR') (2.19)
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is determined by the relation

u(ro,r,t,é’)zuo(/i(ro,r,t),u(ro,r,é’)) (2.31)

Az, +6,0)= (", 7,1), (2.32)
u'(t+qo,&)=u(t,&) qgeZ” (2.33)
has a multiperiodic structure with respect to (‘[, 1,s, 0') with period ((9, o,a, IB) of the form
LT(TO,T,t;so, s,0,§)= uo(/l(ro,r,t), h (s0 -, z(so),é’ - Z(O'))), (2.34)
where the vector-function h(s, Z,é’) has the form (2.26), € = (1,...,1) is M-vector, € =(1,...,1) is

l -vector, moreover

which under the conditions

|, . . =ulr"7,.¢) (2.35)

s'=z¢°

Proof. The form of solution (2.31) of the initial problem (2.1) - (2.1°) follows from the general theory
of the first-order partial differential equations. Special cases of it are given in Lemmas 2.1 and 2.2.

The multiperiodic structure (2.34) of the solution (2.31) is also contained in the indicated lemmas; and
the multiperiodicity is easily verified under the additional conditions (2.32) and (2.33).

The statement (2.35) follows from (2.30).

Note that, %4 =u TO,T,I,SO,S,O',C_‘,/) is the solution of the equation D& =0 with the

differentiation operator /) .

The proved theorem is the multiperiodic structure of the zeros of the differentiation operator /) .

In conclusion, we note that if the conditions (2.32) and (2.33) do not fulfill, then the representation
(2.34) remains the multi-periodic structure of the solution (2.31). But then a definite structure (2.34) does
not possess the periodicity property with respect to 7,7 .

3. The multiperiodic structure of the solution of a homogeneous linear /) -system with constant
coefficients. We consider a homogeneous linear system

Dx= Ax (3.1)
with a differentiation operator /) of the form (1.2) and a constant 72 X /I -matrix A.
We will put the problem of determining the multiperiodic structure of the solution X of the system
(3.1) with the initial condition

x‘ _=u(t,8)e Cff)(R'” xR') (3.19)

To this end, we begin the solution of the problem by studying the multiperiodic structure of the
matricant

X(r)=exp[Ar] (3.2)
of the system (3.1).
We need the following lemmas to that end.

Lemma 3.1. If fj(‘[-i-@j)Z fj(T), ]'21,_7” is some collection of the periodic functions with
rationally commensurate periods: (9]. /16, = r, isa rational number for j k = L_r then for these
functions exist a common period O

f(e+0)= 1) j =T
Indeed, by virtue of rational commensurability exist integer natural numbers ¢, ,..., g, such that

q,0, =...=q,0, =@, which is the required period.
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Lemma 3.2. If the real parts of all eigenvalues equal fto zero and all the elementary divisors are
simple of the constant matricant Y(‘[)= exp [] T], then all the elements of the matrix I are periodic

Sfunctions.
Proof. By the conditions of the Lemma 3.2, the cigenvalues are A, (] ): ib,, j=1,r, where
i = a/—1 is the imaginary unit; the constants bj are either equal to zero or nonzero. If it is nonzero, then

cach cigenvalue /lj (] ) = ibj corresponds to one or more Jordan cells J i of the form

0 -9b,
08
Then the matricant has the form
r(r)=K diag[ell’,..., e“]K’1 , (3.3)
where if bj =0, then / ;= 0 and if bj # 0, then / ;= J ;» moreover

,. (cosbr —sinbrt
Y(r)=¢""=| .~ ! (b.;tO (3.4)
! sinbt  coshr !

K is amatrix of reduction / to the actual canonical form [/ = K diag [I s ]K -
We have a complete proof of the Lemma 3.2 from relations (3.3) and (3.4), and the periods of the
elements of the matrix Y (T) are determined as y, = 27[[?;11 - 27[b;1 on the basis of the Lemma

: : - ; —1 ; 1 .
3.1, taking into account the commensurability of the periods 272'[?]. , j=1r, p<r Periods Yios¥ 5

are rationally incommensurable constants.
Further, cells ij (r ), J. =1, r, of the form (3.4) having the periodicity property with a period ¥,

will be considered as cells depending on the variable 7 =7, :
ij(Tk+]/k):ij(Tk)’ jk:l>rk' (35)
Representing each cell (3.4) using the new variables 7 ..., 7, in accordance with condition (3.5),

from the expression of the matricant (3.3) we obtain a multiperiodic matrix T(f ) =T (Tl yeens Tp) with

peI‘iOd ]/ = (]/17"'7 ]/p)

Since
v, (5)=47, ()
aTk W\ )= AT )
the matrix 7 (f ) satisfies the equation
DT(7)=17(7), (3.6)
where the operator D is determined by
~ /0 0 0
D=({e, —)=—+...4+—, (3.7)
or/ Ot 0T,

e=(l,..1) isa p-vector.
Obviously, under 7 =€ 7 we have 7' (é T): Y (T) and

iY(r) = iT(ér) =1T(er)=1Y(z) (3.8)
dr dr
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Thus, the multiperiodic matrix 7’ (‘f ) defines the multiperiodic structure of the matricant ¥’ (T ) :
Y(z') = T(T1 "“’TPXTI__T”‘ (3.9)

Lemma 3.3. The matricant Y(T) of the system (3.8) under the conditions of Lemma 3.2 has a multi-
periodic structure in the form of a matrix T(‘f ) = T(‘[1 s T, ), which satisfies the system (3.6) with the

differentiation operator (3.7) and along the characteristics T = € T of the operator D turnsinto Y (Z’ )
in other words, these matrices are related by the relation (3.9).
It’s known that from the course of linear algebra the matrix A can be represented in the form

A=KJ(A)K =K J(@+ib)K ' =KJ(a)K '+ K E(ib)K ' =R+1,

where K is some non-singular matrix for reducing the matrix A to Jordan normal form

J ( /1) = diag [J . (/11 ), . r(/lr )] with Jordan's n -cells J, (/1].) corresponding to eigenvalues
A, =a,+ib,, j= ,r;:R=K J(a)K’1 is the matrix, J(a) is matrix obtained from the Jordan
form J (/1) by replacing the ecigenvalues /1]. with their real parts a,=Re /lj, Jj= l,_r,
1=K E(ib)K’1 is the matrix, E(ib)z diag[iblEl,...,ibrEr], bj = Im/lj, J= 1,_7”, I is the

unit n, -cells, j =1,r, moreover, the matrices R and [ are commutative: R/ = [R.. Therefore,

4 Ir+R It R . .
et =" =" " , otherwise, the matricant (3.2) can be represented as

X(@)=v(r) (), (3.10)
where Y(r) = exp [] T], Z (r): exp [R T], moreover, along with property (3.8), Y (T ) satisfies the

equation

d

57Y@)=AY@)—Y&ﬁ3 (3.11)
.
Indeed, we making the replacement
X=Y(@)Z
in the equation
X = AX (3.12)

obtain the equation
Z-y" (T){Ay(r)_iy(f)}z |
dr

Then, we obtain the identity (3.10) taking into account that 7 =RZ , where Z (T ) = exp [R /1 ]
The identities (3.8) and (3.11) establish the connection of the matricant } (T) = exp [I T] with the
triple of matrices 4, R, [ ; moreover, the matrix / satisfies the conditions of Lemma 3.2. Therefore,

according to Lemma 3.3, the multiperiodic structure of the matricant X (T ) = exp [A T ], by virtue of
equality (3.10), is determined by a matrix X (T T ) of the form

)?(r,f)z X(r,rl,..., rp)z T(rl,..., rp)eRT, (3.13)
which is connected by the matricant X' (T ) , by relation
X(z.7)  =x() (3.14)

Thus, the following theorem is proved.
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Theorem 3.1. In the presence of complex eigenvalues of the matrix A, the matricant (3.2) of the
system (3.12) has a multiperiodic structure defined by the matrix (3.13) and relations (3.6) - (3.9), and it
along the characteristics T = €T of the operator D satisfies condition (3.14). The matrix T’ (‘f ) turns
into a constant matrix in the absence of complex eigenvalues.

Now the solution of the objectives set can be formulated as Theorem 3.2.

Theorem 3.2. Let conditions (2.2) - (2.4) be satisfied. Then the solution x(‘[o, 7,1, é’) of the problem
(3.1) - (3.1°) defined by relation

x(ro,r,t,é’)z X(r)u(/i(ro,r,t),u((ro,r,g’))) (3.15)

has a multi-periodic structure in the form of a vector-function

(T T.7.1, 8's,0 g’) X(z, r)u( (r T t) (so —s,z(so),g“—z(a))), (3.16)

that satisfies equation

Dx =Ax 3.17
with the differentiation operator
D=D+D, (3.18)
defined by relations (2.20) and (3.7).
Proof. The representation (3.15) is known from [2], and (3.16) follows from the proved Theorems 2.1
and 3.1. The identity (3.17) can be verified by a simple check.
Now we investigate the question of the existence of nonzero multiperiodic solutions of the systems of
equations (3.1).We begin the study with the simplest cases.
We consider a canonical system with a single zero eigenvalue

dy _ o odx,_  dy, _
> 1 9y -1 2
drt drt drt
which in the vector-matrix form has the form
dx
—=Fkx, (3.19)
dr

where [7, is the sub-diagonal unit oblique series of the #2-th order, X = (x,,..., X, ).

We introduce a triangular matrix X' (7) with elements of the form of power functions:

1 0 .. 0
T 1 .. 0
XO(T):
Tnfl /Z_n72
(n=-1! (n-2)

and an arbitrary constant vector ¢ = (C1 yenes Cn) to represent the general solution X of the system (3.19).
Then the general solution of the system (3.19) is represented in the formx = X (7) ¢ .
It easy to see from the structure of the general solution that system (3.19) admits a one-parameter
family of periodic solutions X~ of the form
x(7)=X,(r)c’, (3.20)
where ¢ =(0,...,0,¢’), ¢, is an arbitrary parameter.

Next, we consider a system of pairs (x; , x;.' ) of equations of the form
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& " ' " -
—t=-bx|, —=bx|, —+=x -bx!, —L=x7 +bx, j=11,
dr dr dr dr
which can be represented using the vector X, = (x; s x;.' ) in the form
dx ; T
d—l =bl x,, d—’ =FEx, +blx,, j=11,
T T
where E2 is the second-order identity matrix, 7/, is the second-order symplectic identity matrix,
b =const#0.
If we introduce a constant block matrix
b, O O .. O O O
E, b, O .. O O O
Jy-|O B I, .. O O O
o O O .. E, b, O
2 2
o O O .. O E bl
2 2

with blocks [ 2,E2 and second-order zero blocks (), then the system under consideration with a vector

X =(x,,...,x,) can be represented in the form

dx
—=J(b)x, (3.21)
dr

which we call a canonical system with a single pair of purcly imaginary conjugate cigenvalues

A=(ib,—ib).
We introduce a diagonal block matrix
7*(z)=diag [T,(z), ..., T,(7)]
with a block 7}, () of the form
coshr — sinbr}

sinbr coshrt

TZ(T){

and a triangular block matrix with elements of the form of power functions:
E, 0 . O
72} E .. O

2 2
V(7)) =
- 72

(-1)! (I-2)
to represent the general solution X of the system (3.21).
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Then the matricant X “(7 ) of the system (3.21) can be represented as X “(7) =7 "(7)Y (7).
and the general solution X (T ) is determined by the relation

x(t)=X"(r)c
with an arbitrary constant vector C = (Cl, s C ), c, = (C; s C;.'), J= 1,_[

We obtain casily a family of @ = 2mb! -periodic solutions x”(7) by parameters ¢, and ¢, of the
form
x(t)y=X"(1)c” (3.22)
with a constant vector ¢ = (0, 0, o ), C, = (Cl' 5 Cl") from the structure of the general solution

Now, by replacing X = Kz with a non-singular constant matrix K , we reduce the system (3.1) to the
canonical form

Dz =J(A)z, J(A)= K "AK, (.1

which consists of subsystems in accordance with Jordan's cells of the matrix A4 .

Obviously, systems (3.1) and (3.1') are equivalent with respect to the existence of multiperiodic
solutions.

It is also clear that the system (3.1') has subsystems of the form

!
Dz, =E,z, (3.1)
or
!
Dz, =J(b)z,, (3.10)
respectively with matrices similar to the matrices of systems (3.19) and (3.21), in the presence of zero or
purely imaginary e¢igenvalue. Obviously, nonzero solutions of (3.20) and (3.22) satisfy the systems (3. 1;)
and (3.1)), respectively
Consequently, in the cases under consideration, system (3.1') allows nonzero periodic solutions
z"(7). Then Kz *(7) = x”(7) is a periodic solution of the system (3.1).

Thus, the following theorem is proved.
Theorem 3.3. Under the conditions of the Theorem 3.2, the system (3.1) allowed nonzero

multiperiodic solutions enough for the matrix A to have at least one eigenvalue A = A(A) with the real
part Re A(A) =0 equal to zero.

We have the following theorem from the theorem 3.3, as a corollary.
Theorem 3.4. Under the conditions of the Theorem 3.3, the system (3.1) did not admit the

multiperiodic solution other than trivial, it is sufficient that all eigenvalues of the matrix A have nonzero
real parts.
Since the system (3.1) is (@, @) -periodic, of particular interest is the question of the existence of its

nonzero multiperiodic solutions with the same periods.
The general solution X of the system (3.1) can be represented in the form

xX(7,1,6) = X(D)u(z.1.5), (3.23)
where # =u(7,1,{) is the zero of the operator [ with the general initial condition for 7 =0
x(0,7,8) =u(0,1,8) = u,(1,4),
X (7)= exp[A r] is the matricant of the system.

Among the zeros of the operator /) there exist multiperiodic ones, in particular, constants by the
Theorem 2.1.

— 7] ——
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Theorem 3.5. Under the conditions (2.2) - (2.4), the system (3.1) had (6, ®) -periodic with respect
to (T,t) solutions of the form (3.23) corresponding to the multiperiodic zero of the operator D with the

same periods, it is necessary and sufficient that the monodromy matrix X (@) satisfies condition

det[X (6)- E]=o0. (3.24)
Proof. Under the conditions of the theorem, its justice is equivalent to the solvability of equation
X(t+0)u=X(1)u (3.25)

in the space of (€, @) -periodic with respect to (7,1) zeros # =u(7,1,{) of the operator 1 .
We arrive at the solvability of the system of equations
[x(0) - E]u=0,
which is equivalent to the condition (3.24) taking into account the propertics of the matricant
X(z+60)=X(r)X(6) from the system (3.25).
In conclusion, we note that the fulfillment of condition
det[X (0)-E]= 0 (3.26)
guarantees the absence of such solutions.
We also note that condition (3.24) is a sufficient sign of the existence of the nonzero multiperiodic
solution of the system (3.1).
Theorem 3.6. Let conditions (2.2) - (2.4) and (3.26) be satisfied. Then the system (3.1) allowed

nonzero (6, ®) -periodic solutions of the form (3.23) necessary and sufficient for the functional-
difference equations

ut +0,t+qw,0)=[XO0)-E]' XO)|u(z+6,t + g0, )-ul(r,t,0)], ge 2" 327

to be solvable in the space of zeros of the operator 1) .
Proof. Under the condition (3.26) from the definition of (€, @) -periodicity with respect to (7,1) of

solution (2.23), we have the equation (3.27). We must be to take into account that #(7,7,¢) is the zero

of the operator 1) to complete the proof.

If the equation (3.27) has only zero solutions, then, under the condition (3.26), the system (3.1) does
not have a nontrivial multiperiodic solution.

We also note that the fulfillment of the condition

Red (A)#0, j=Ln
on the non-zero real parts Re ﬂ,j (A) ofall eigenvalues ﬂ,j (A) of the matrix A ensures the fulfillment

of condition (3.26).
In conclusion, we note that on the basis of the multiperiodic structures (2.30) and (3.13) the

characteristics 1(z°,7,¢) of the matricant X (7) and by the theorems which proved above, it is easy to
obtain structures of (&, @) -periodic with respect to (7,7) solutions of the system (3.1) expressed in

terms of variables 7,7,5,0,1,¢ .

4. The multiperiodic structure of an inhomogeneous linear system with operator D. Consider the
inhomogeneous linear equation

Dx =Ax + f(r,1,{) 4.1
corresponding to the homogenecous equation (3.1), where the M-vector function f(7,7,{) satisfies
condition

fe+6,t+q0,8)=f(1,1,0)e Cff‘t’f)(RxR’” ><Rl). (4.2)
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Assume that the condition (3.26) is fulfilled and we search for the (€, @) -periodic with respect to
(7,t) solution x(7,7,{) of the system (4.1) that corresponds to zero u(7,¢,{) of the operator 1D
possessing the property of multiperiodicity with the same periods (€, @) for (7,1).

Therefore, we have the solution

x(r,t, ;’) = X(r)u(r,t, ;’)+ X(r)j X’l(s)f(s, A(s,T,0), 1(s, T, é’))ds (4.3)

with zero u(‘[ +0,t+ qa),é')= u(‘[,t,é’), ge Z" of the operator /) having the property
x(r+¢9,t+qa),§)=x(r,t,§), qeZ”.

Then the solution (4.3) has another representation
x(z.0,8) = X( +0)ulz..£)+ X(z+0) [ X (s)f (s, A, +0.0), (5.7 +0.))ds. (4.4

Further, we obtain

o, ) =[xz +0)-x"'()|' [IX (5)f (s, A(s, 7+ 0,0), u(5,7+6,))ds +

+ [ X5, A, 700, (s, T,;))ds}

4.5)
eliminating from identities (4.3) and (4.4) the unknown zero #(7,#,{) of the operator [, where the

reversible of the matrix [X - (T + (9) -X (T )] follows from condition (3.26).
If we accept the notation

S Al 70, p(s,7,8)), T—0,
10, A5, 7,0, 105,7,€)) = {f(s, A8, 7+0,0), u(s,7+0,¢)), 0——>7+0,

then formula (4.5) can be represented in a more compact form
xr,0,8)=[x(z+6)-x ()" jX ) (s, A(s, 7,00, (5,7, E))ds. (4.6)

where ¥ ——> § means changes in the variable § from J to O . Obviously, if the system (3.1) does

not have multiperiodic solutions, except for zero, then the solution (4.6) of the system (4.1) is a unique
multiperiodic solution.
Further, we have solutions

x(s,0,7,7 l,é’)z[)?’1(7+9,?+59)—)?’1(7,?)}1 X
x j X (e)f (e, e, 7.0), h(e — s, 2(e),& — 2(0)))de

4.7)

of the equation o
Dx=Ax+ f(1,t,£)

with the differentiation operator (3.18) from representation (4.6) on the basis of multiperiodic structures
(2.30) and (3.13) of the quantity £/(s,7,{) and X (7).
Thus, the following theorem is proved.

— 76 ——
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Theorem 4.1. Assume that conditions (2.2) - (2.4), (3.26) and (4.2) are satisfied, and the
homogeneous system (3.1) does not have multiperiodic solutions except zero. Then the system (4.1) has a

unique (60, ) -periodic solution (4.6) for which the (a,pf,y,0,®)-periodic with respect to
(s,0,7,7,t) structure (4.7) satisfies equation (4.8) with the differentiation operator (3.18).

In conclusion, note that we can derive the multiperiodic structure of the general solution (4.3) of the
system (4.1) similarly to formula (4.7).

Conclusion. A method for studying the multiperiodic structure of oscillatory solutions of perturbed
linear autonomous systems of the form (1.1) - (1.2) was developed. The main essence of the method for
studying the multiperiodic structures of solution of the system under consideration is a combination of the
known methods [1-3] with the methods used in [15, 16] for the autonomous systems. In this case, some
system input received perturbations depending on the time variables 7, 7. In conclusion, the sufficient
conditions for the existence of the multiperiodic solutions of linear systems (1.1) - (1.2) with the
differentiation operator D in the directions of a toroidal vector field with respect to time variables and of
the form of Lyapunov's systems with respect to space variables were established. Moreover, relation (4.6)
is an integral representation of the multiperiodic solution of the system, and (4.7) determines its
multiperiodic structure. We also note that the integral representation given here differs from the analogue
given in [15, 16].
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BEKTOPJIBIK, 6PIC BOMBIHIIIA AADPEPEHITHAJIIAY OITEPATOPJIbI KO3AbIPHLIIF'AH CBhI3bIKTHI
ABTOHOM/BIK XKYHUEJEPAIH KOIIITEPUOATDHI INEINIMJAEPIH 3EPTTEY

Annorarus. Toyenciz KeHICTIK aliHbIMANBICHIHA KATHICTHI JSIITyHOB JKylecl TYpIHIET! *KoHE YaKbIT aifHBIMATbICHIHA
KAThICTHI KOITIEPHUOATHl TOPOUAALIBI TYPJErl BEKTOPIBIK epicrep OarbIThl OofibHIIA D muddepeHimaniay onepaTopibl
CHI3BIKTHI JKYiie KapacTeIpbUIaIbl. JKyHeHi aHBIKTalThIH OapIIblK OeplireHIep He YaKbIT allHBIMAIBICHIHAH KOIIIEPHUOITHL TOYEILJ,
He onap/iaH Toyenci3 Gonapl. JKyleHiH aBTOHOMIBIK KarJaiibl OYPBIHFBI KYMBICTap/ia KapacThIPBUIFaH. byl xargaiiia xyieHi
aHBIKTalTHIH KelOip OeplireHiepre yakbIT afHBIMANBICBIHAH TIyelNl KO3JBIPTKH OepinreH. ParpoHamapl elmeHGeHTiH
KULTIKTEPIIH KEKEIeHI'€H TEePHOATH KO3FAIBICTAPBIHBIH CYIEPIO3UITSICH TYPIHAET! JKyiie apKbUIbI CHIIATTATFaH 13JeTiH/IL
KO3FaJIbIC Typalbl Cypak 3epTTereli. bacTalkpl ecertep %oHe KO3FalIbICTap/IbIH KOIMIEPUO TIPS Ty PalIbl €ceIITep 3epPTTeNe/Il.
Ecenrtin mentiMiz aHpIKTay Ke3iHje Kyiie GacTallkpl HYKTe/IeH IbFaThIH XapaKTePUCTHKA MaHaMbIH/la HHTETPAJaHaThIHbI, OJTaH
KeliH GacTarkpl GepilreHep XapakTepUCTUKAIBIK KyHeHiH GipiHI MHTerpaTjapbIMeH aybICTRIPhUIATRHEI Oenrini. CoOHbIMEH
I3ETIHI METM Keleci KOMIIOHEHTTepIeH Typaabl 1D oniepaTOphIHBIH XapakTePUCTUKAIBIK, KYWeCiHIH XapaKTepUCTUKAckl MeH
GIpiHIT MHTErpaTaphl, *KyleHiH 60c MYyIleci MeH MaTpHIaHTHL. byl KOMIIOHEHTTEepAiH 3epTTelyI >KyMeMeH CUIlaTTaTraH
KO3FaJIbICTIH KOIMIEPUOATHUILIK TaOHFAThIH allly Ke3iH/e MaHbI3/bl MarblHACK Oap OONaThIH IEPHOJITH KOHE IIEPHOJITHL eMec
KYPBUIBIMABIK KypayIbuiapsl Gonajpl. ITlenmim/i  epekIeneHreH KelMIepHo ATkl KypayIibulap apKbUIbl CHITATTay Al INEIIiMHIH
KeIMIEePHOATHUIBIK KYPBUIBLIMBI JIel aTarnra. O Kell alfHbIMAIbUIBI IIEPHOIb! QyHKIMsIIap MeH Oip alfHbIMATBLIBI KBA3UIIEPHOITH
GYHKIMSUIApBIHBIH, ~OallaHbICHl  Typalbl bOpiBIH TaHBIMAl TeopeMachl Heri3iHae Kysere acajipl. CoHbIMEH, Xyienepsi
aHBIKTANTHIH GepuIreHaepi KO3BIphUIFaH JKarjakiga OipTeKkTi JkoHe OIpTeKci3 JKYHeNmepaiH Kalbl JKOHE KOIepHoITh
TIENTMAEPIHIH KOIIIEPUOATH KYPhUIBIMBI HAKTHI 3epTrenreH. Ochllaia D oriepaTophIHBIH HOJJEepl MeH KYHEHIH MaTpHUIIaHTHI
3epTTenreH. bipTekTi >koHe OIpTeKci3 KyMelmepAiH KOIMepUoATHl TMenmMaepiHiy Gap Golaysl *koHe GomMaybl IMapTTaphl
TaralbIHJaIFaH.

Tyitin ce3aep: KermreproaTs! ImentiM, aBTOHOMJBIK kKyie, muddepeHImaniay orepaTopsl, JISIIyHOB BEKTOPIBIK epici,
KO3/IBIPTKBL.
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HCCJEJTOBAHUE MHOT'ONEPHOANYECKHUX PEINEHUI BO3MYIIEHHBIX JUHEMHBIX
ABTOHOMHBIX CUCTEM C OIEPATOPOM JHU®PEPEHIIUPOBAHHUA 11O BEKTOPHOMY IIOJIIO

Annotammsi. PaccmarpuBaercs nmHEHHAs cuctema ¢ omeparopoMauddepeHmposanusa 1) mo HANMpPaBICHHAM
BCKTOPHBIX IIOJICH BHJA CHCTEMBI JIAMYHOBA OTHOCHTEIIBHO HPOCTPAHCTBCHHBIX HE3ABUCHMBIX IIEPEMCHHBIX H
MHOTOTIEPHOJMYCCKOTO TOPOMIAIBHOTO BHIA OTHOCHTCIBHO BPEMCHHBIX IICPEMEHHBIX. BcCe BXOMHBIC JAHHBIC
CHCTEMBI JTHOO MHOTONICPHOAMYHO 3aBUCAT OT BPEMCHHBIX NEPEMCEHHBIX, MO0 OT HUX HE 3aBUCAT. ABTOHOMHBIH
Cy4all CHCTEMBI PACCMOTPCH B HAmCH paHHCH padore. B JaHHOM CIydac HEKOTOPBIC BXOIHBIC JAHHBIC IOy IHIIH
BO3MYIUCHMS, 3aBHCAINNC OT BPEMCHHBIX IICPEMEHHBIX. MccrmeayeTcs BOMPOC O IPEACTABICHHH HCKOMOTO
JBIKCHHUS, OMHCAHHOTO CHCTEMOHM B BHJAC CYNCPIOZHIMH OTACIBHBIX HMEPHOIMYCCKUX ABIDKCHHH PAlIOHATIBHO
HECOM3MEPHUMBIX 4acTOT. M3ydaroTcs HavampHBIC 33a7a4H W 33Ja4H O MHOTONICPHOAMYIHOCTH JBIKCHHI. M3BECTHO,
YTO IPH OTNPEACICHUM PEIICHHUH 33JaY CHCTEMA MHTEIPHPYCTCS BAOIb XAPAKTCPHUCTHK, HCXOMIIIUX W3 HAYAIBHBIX
TOYCK, 4 3aTE€M, HAYaJbHBIC JAHHBIC 3aMCHSIOTCA NEPBBIMH HHTETPATAMH XapAaKTCPUCTHUCCKUX CHCTEM. TakuMm
00pazoM, HCKOMOE pCIICHHEC COCTOHT H3 CICAYIOIMMX KOMIIOHCHTOB. XApaKTCPHCTHK M MEPBBIX HHTEIPANIOB
XAPAKTEPUCTHYCCKUX CHCTEM OTIEpaTopa /), MaTPHIIAHTA U CBOOOJHOTO JICHA CAMON CHCTEMBL. JTH KOMITOHCHTEHL, B
CBOIO OYepenb, MMCIOT TNMEPHOAMYCCKHE M HEICPHOJMYCCKHE CTPYKTYPHBIC COCTABILIIOLINE, KOTOPHIC HMCIOT
CYHICCTBEHHOE 3HAUCHHC NPH PACKPHITHH MHOTONICPHOAMYCCKOW HMPHUPOIBI JBH)KCHUH, OMHCAHHBIX HCCICTyEMOH
cucremoii. [lpeacraBneHHE pEIICHHA C BBIJCJICHHBIMH MHOTOIICPHOJMYMECKEMHI COCTABILIIOIMMH HA3BaHO
MHOTOTIEPHOJMYCCKON CTPYKTYpo# permmeHms. OHO peamm3yeTrcsi HA OCHOBE W3BECTHOH Teopembl bopa o csazm
MIEPHOAMICCKON (DYHKIMHM OT MHOTHX TEPEMCHHBIX M KBA3HUICPHOIUICCKON (DYHKIMH OJHOW MepeMcHHOH. Takum
oOpazoM, 0oJee KOHKPETHO, HCCICAYIOTCS MHOTOIICPHOJMYCCKHE CTPYKTYPHI OOIMMX M MHOTOIICPHOIUMECKUX
pELICHUI OTHOPOIHBIX W HEOJHOPOJHBIX CHCTEM C BO3MY IICHHBIMH BXOJHBIMH JAHHBIMH. B TakoM ayxe m3y4aroTcs
HyIH omeparopa [) W MATPHUIAHT CHCTEMBI. YCTAHABIMBAIOTCS VCIOBHS OTCYTCTBHS M CYIICCTBOBAHHS
MHOTOTICPHOJMYCCKUX PEIICHUH KAK OTHOPOJHBIX, TAK W HEOJHOPOIHBIX CHCTEM.

KmoueBnie cioBa: MHOTOIEpHOIMYECKOC PEIICHHE, ABTOHOMHAS CHCTEMA, omepaTop Au((pepeHIMPOBAHNI,
JIamyHOBA BEKTOPHOE HOJE, BO3MYIICHUE.
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