G. S. ABİLOVA, F. K. MUKANTAYEVA, V. V. VERBOVSKİY

(Suleyman Demirel University, Kaskelen, Republic of Kazakhstan)

SOME PROPERTIES OF FUNCTIONS DEFINABLE

ON PARTIALLY ORDERED WEAKLY O-MINIMAL STRUCTURES

Abstract. The article surveys some topics related to o-minimality. A partially ordered structure is called weakly o-minimal if any definable subset is a finite union of convex sets. We consider some properties of functions definable on partially ordered weakly o-minimal structures. We show that there is no infinite interval such that each point of this interval is a point of a local minimum (maximum).

Keywords: partially ordered, o-minimality, definable functions, convex sets, local minimum (maximum).

Тірек сөздер: жартылай реттелген, о-минимальділігі, функция қолданушы, айқын жиынтық, локальды минимум (максимум).

Ключевые слова: частично упорядоченное, о-минимальности, пользователем функций, выпуклых множеств, локальный минимум (максимум).

In [1] van den Dries considered o-minimal expansions of the ordered field of reals. Later in [2–4] Anand Pillay and Charles Steinhorn introduced a general notion of o-minimality. After that Max Dickmann in [5] considered an example of a weakly o-minimal structure. And then Dugald Macpherson, David Marker, and Charles Steinhorn in [6] developed a theory of weakly o-minimal structures. Here we consider some generalization of this notion to partially ordered structures and investigates some properties of definable unary functions.

Recall that is subset A of a partially ordered structure M is called *convex* if for any two element a_1 and a_2 of A and any element b of M the condition $a_1 < b < a_2$ implies that b is an element of A. A maximal convex subset of A is called a *convex component* of A.

Definition (K. Kudaybergenov) A partially ordered structure is called *weakly o-minimal* if any definable subset is a finite union of convex sets.

Let (M, <, f, ...) be a ordered set, and (N, <) a totally ordered set, where $f: M \to N$ and the full induced structure on M is weakly o-minimal. That is if A is a definable subset of $M^n \times N^k$ in the structure $(M \cup N, <, f, ...)$ then the projection of A on M^n is definable in the full induced (M, <, f, ...).

We define the following formulae:

$$\varphi_{>}(x, a) = (f(x) > f(a))$$

 $\varphi_{<}(x, a) = (f(x) < f(a))$
 $\varphi_{=}(x, a) = (f(x) = f(a))$

The intersection of $\varphi_{>}(M, a)$ with the interval (a, ∞) is definable, so there is a minimal convex components, because the number of convex components is finite. The same we can say for the intersections of $\varphi_{<}(M, a)$ and $\varphi_{=}(M, a)$ with the interval (a, ∞) .

Note that the finitely many convex components of these three formulae have *a* as the left boundary point.

Definition. We say that a point *a* is of the type (k, m, n) from the right if there exist *k* convex components of $\varphi_{>}(M, a)$ with the left boundary point *a*, there are *m* convex components of $\varphi_{<}(M, a)$ with the left boundary point *a* and there are *n* convex components of $\varphi_{=}(M, a)$ with the left boundary point *a*.

Note, that similar things can be done for the intersections of these three formulae with the interval $(-\infty, a)$.

It is an simple exercise to write formulae $\Psi_{k,m,n}(x)$ and $\Theta_{k,m,n}(x)$ which express the fact that x is of the type (k, m, n) from the right and of the type (k, m, n) from the left, correspondingly.

Let $F_{h,i,j,k,m,n}(x)$ be the conjunction of $\Theta_{h,i,j}(x)$ and $\Psi_{k,m,n}(x)$.

Lemma 1 If $F_{h,i,j,k,m,n}(x)$ is true on an infinite interval and j > 0 or n > 0, then both j and k are equal to 0.

Proof. We consider only the case j > 0, because the other case is similar. Let $F_{h,i,j,k,m,n}(x)$ be true on (a,b). Let c belong to (a,b). Then there is d from (a,b) such that for any x from (c, d) it holds that f(x) = f(c). Let e be from (d,c). Then f(x) = f(c) = f(a) = f(e). Hence, n > 0.

Lemma 2 If $F_{0,0,j,0,0,n}(x)$ is true on an infinite interval (a,b), then the function f is constant on (a,b).

Proof is obvious.

Note that if the formula $F_{h,0,0,k,0,0}(a)$ is true, then *a* is a point of a local minimum. If the formula $F_{0,i,0,0,m,0}(x)$ is true, then *a* is a point of a local maximum.

Theorem 3 There is no infinite interval *I* such that each point of this interval is a point of a local minimum (maximum).

Proof. Assume the contrary, that such a function f does exist. Throughout the proof of the theorem all considered elements belong to the interval I.

Claim 1 We may assume that if f(a) = f(b), then *a* and *b* are incomparable.

Proof of Claim1. Let E(x, y) be defined as f(x) = f(y). It is an equivalence relation. Consider [a] = E(M, a). It contains no interval otherwise on this interval the formula $F_{h,i,j,k,m,n}(x)$ holds with j > 0 and k > 0.

There is a minimal convex component of the equivalence class [a], because any finite partially ordered set has a minimal element, and this convex component is a point. Let G(x) = (x is a minimal point of [x]). Note that G(M) is infinite. If G(M) contains no interval there is a minimal point *a* of G(M) as its minimal convex component. Since *I* is open there is *b* from *I* such that b < a. Then any minimal element of [b] is less than *a*, for a contradiction.

So we may assume for simplicity of notation that G(M) = I. Note that minimal elements of any partially ordered set are incomparable.

Notation U_a = the union of $\{x > a : f(y) > f(x) \text{ for all } y \text{ in } (a, x]\},$ $\{x < a : f(y) > f(x) \text{ for all } y \text{ in } [x, a)\}, \text{ and } \{a\}.$

That is the point *a* is a global minimum on U_a and U_a is a maximum convex set containing *a* with this property.

We denote a $\leq_U b$ iff U_a contains b, and $a \diamond b$ iff either a = b or $a \leq_U b$, or $a \leq_U b$.

Claim 2 1) U_a is a convex set.

2) if $a \neq b$, then $U_a \neq U_b$.

Proof is obvious.

Property 1 If the intersection of U_a and U_b is not empty, then either U_a is a subset of U_b or U_b is a subset of U_a , for any a, b with a < b.

Proof. Let the intersection of U_a and U_b be non-empty and a < b. Assume also that f(a) < f(b). If b is in U_a then U_b is a subset of U_a .

Let *b* be not in U_a . Then there is *d* such that a < d < b and f(d) < f(a) < f(b). Since *d* is in U_b , so $U_a < d < U_b$. Then $U_a \cap U_b$ is empty, for a contradiction.

Property 2 The relation \leq_U is a strict partial order.

Proof. Asymmetry and transitivity hold for $<_U$.

Property 3 For any chain $a_0 \leq_U a_1 \leq_U \ldots \leq_U a_n$ there is $a_{n+1} \geq_U a_n$.

Proof. Take a_{n+1} be an arbitrary element of U_b where $b = a_n$.

Property 4 Let $b \leq_U a$, $c \leq_U a$ and $b \leq c$. Then $b \diamond c$.

Proof. Since $b <_U a$, $c <_U a$, then *a* is in $U_b \cap U_c$ and by Property 1 it holds that either U_b is a subset of U_c , or U_c is a subset of U_b .

Property 5 For any *a* the set $C_a = \{x : x \leq_U a\}$ does not contain infinite \leq_U -chain.

Proof. Assume the contrary that C_a contains an infinite chain. Then C_a contains an infinite interval *J*. Let *d* be in *J* and *m*, *n* is in $J \cap U_d$ be such that m < d < n.

By Property 4 it holds that $m \diamond n$, say, $m <_U n$. Then *n* is in U_m . Since U_m is convex, so *d* is in U_m , that is f(m) > f(d), for a contradiction.

Property 6 \leq_U is a discrete order.

Property 7 For any *a*, *c* with $c \leq_U a$, there is *b* such that $c \leq_U b$ and $(a \diamond b)$.

Proof. As *b* we take any element from U_c such that if a > c then b < c, and if a < c then b > c.

Notation K is the set of all minimal elements respective to $<_U$

 $S(a) = \{x : a \leq_U x \text{ and there is no } y \text{ with } a \leq_U y \leq_U x\}$

Property 8. Sets *S*(*a*), where *a* runs over dom *f*, form a definable uniform partition of $(\text{dom } f) \setminus K$.

Proof. If $S(a) \cap S(b)$ is non-empty, then it contains *c* such that $a <_U c$, $b <_U c$. Then either *a* $<_U b$ or $b <_U a$. Then either a < b < c and *c* is not in S(a), or b < a < c and *c* is not in S(b), for a contradiction.

Property 9 K contains a minimal element.

Proof. Otherwise, it contains an infinite interval *I*. Let *b* be in *I*, and *c* in $U_b \cap I$. Then $c \ge_U b$, for a contradiction.

Property 10 For all *a* it holds that S(a) is a subset of U_a .

Property 11 The set S(a) is finite for all a.

Proof is similar to the proof of Property 9.

By partition *K*, *S*(*a*), *a* runs over dom *f*, we construct an equivalence relation E(x, y). Observe that each *E*-class contains a minimal element with respect to $<_U$. Properties 9 and 11 imply that E is an infinite equivalence with finite classes.

Let *X* consist of minimal elements of *E*-classes with respect to <. Then *X* is infinite. Let *U* be a maximal convex component of *X*. Let *a* be in *U*. By properties 7 and 3 there is $b <_U a$ such that *b* is not in *X*, b > a.

Let *c* be in U_b with c > b. Since S(c) is not empty, it contains some *d* from *X* by property 3 and S(c) > b by Property 10. Then d > b > a, both *a* and *d* belong to *X*, and *b* does not belong to *X*, for a contradiction.

The theorem is proved.

REFERENCES

1 L. van den Dries, "O-minimal structures", Logic: from foundations to applications (Staffordshire, 1993), edited by W. Hodges et al., Oxford Univ. Press, New York,

1996, pp. 137-185.

2 Pillay A., Steinhorn C., "Definable sets in ordered structures, I", Trans. Amer. Math. Soc. 295:2 (1986), 565-592.

3 Knight J.F., Pillay A., Steinhorn C., "Definable sets in ordered structures, II", Trans. Amer. Math. Soc. 295:2 (1986), 593-605.

4 Pillay A., Steinhorn Ch., "Definable sets in ordered structures, III", Trans. Amer. Math. Soc. 309:2 (1988), 469-476.

5 Dickmann M.A., "Elimination of quantifiers for ordered valuation rings", Proceedings of the third Easter conference on model theory (Gross Koris, 1985), Fachbereich Mathematik, Humboldt Univ. Berlin, 1985, pp. 64-88.

6 Macpherson D., Marker D., Steinhorn Ch., "Weakly o-minimal structures and real closed fields," Transactions of the American Mathematical Society, vol. 352 (2000), pp. 5435-83.

Резюме

Г. С. Әбілова, Ф. К. Мұқантаева, В. В. Вербовский

(Сүлеймен Демирел атындағы университет, Қаскелен, Қазақстан Республикасы)

ЖАРТЫЛАЙ РЕТТЕЛГЕН ӘЛСІЗ О-МИНИМАЛЬДІ ҚҰРЫЛЫМДАРДА АНЫҚТАЛҒАН ФУНКЦИЯЛАРДЫҢ КЕЙБІР ҚАСИЕТТЕРІ

Мақалада о-минимальділіктің кейбір жалпы қорытындылары қарастырылған. Біз жартылай реттелген әлсіз о-минимальді құрылымдарда анықталған кейбір функциялардың қасиетін қарастырамыз. Біз интер-валдың әрбір нүктесі локальды минимум (максимум) нүктесі болатын шексіз интервалдың жоқ екенін көрсетеміз.

Тірек сөздер: жартылай реттелген, о-минимальділігі, функция қолданушы, айқын жиынтық, локальды минимум (максимум).

Резюме

Г. С. Абилова, Ф. К. Мукантаева, В. В. Вербовский

(Университет им. Сулеймана Демиреля, Каскелен, Республика Казахстан)

НЕКОТОРЫЕ СВОЙСТВА ФУНКЦИЙ, ОПРЕДЕЛИМЫХ НА ЧАСТИЧНО УПОРЯДОЧЕННЫХ СЛАБО О-МИНИМАЛЬНЫХ СТРУКТУРАХ

В статье рассматривается некоторое обобщение о-минимальности. Мы рассматриваем некоторые свой-ства функций, определимых в частично упорядоченных слабо оминимальных структурах. Мы показываем, что не существует бесконечного интервала, такого что каждая точка этого интервала есть точка локального минимума (максимума).

Ключевые слова: частично упорядоченное, о-минимальности, пользователем функций, выпуклых мно-жеств, локальный минимум (максимум).

Поступила 15.10.2013г.