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SOME PROPERTIES OF FUNCTIONS DEFINABLE 

ON PARTIALLY ORDERED WEAKLY O-MINIMAL STRUCTURES

Abstract. The  article  surveys  some  topics  related  to  o-minimality.  A  partially  ordered
structure is called weakly o-minimal if any definable subset is a finite union of convex sets. We
consider  some  properties  of  functions  definable  on  partially  ordered  weakly  o-minimal
structures. We show that there is no infinite interval such that each point of this interval is a point
of a local minimum (maximum). 
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In [1] van den Dries considered o-minimal expansions of the ordered field of reals. Later in
[2–4] Anand Pillay and Charles Steinhorn introduced a general notion of o-minimality. After that
Max Dickmann in [5] considered an example of a weakly o-minimal structure. And then Dugald
Macpherson,  David  Marker,  and  Charles  Steinhorn  in  [6]  developed  a  theory  of  weakly  o-
minimal  structures.  Here we consider some generalization of this  notion to partially ordered
structures and investigates some properties of definable unary functions.

Recall  that is subset  A  of a partially ordered structure  M is called  convex if  for any two
element  a1 and  a2 of  A and any element  b of  M the condition  a1 <  b <  a2 implies that  b is an
element of A. A maximal convex subset of A is called a convex component of A.

Definition (K. Kudaybergenov) A partially ordered structure is called  weakly o-minimal if
any definable subset is a finite union of convex sets.

Let (M, <, f, …) be a ordered set, and (N, <) a totally ordered set, where f: M → N and the full
induced structure on M is weakly o-minimal. That is if A is a definable subset of Mn × Nk in the

structure (M  N, <, f,…) then the projection of A on Mn is definable in the full induced (M, <, f,
…).

We define the following formulae: 



φ>(x, a) = (f(x) > f(a))

φ<(x, a) = (f(x) < f(a))

φ=(x, a) = (f(x) = f(a))

The intersection of φ>(M, a) with the interval (a, ∞) is definable, so there is a minimal convex
components, because the number of convex components is finite. The same we can say for the
intersections of φ<( M, a) and φ=(M, a) with the interval (a, ∞).

Note that the finitely many convex components of these three formulae have  a as the left
boundary point. 

Definition. We say that a point a is of the type (k, m, n) from the right if there exist k convex
components of φ>(M, a) with the left boundary point a, there are m convex components of φ<(M,
a) with the left boundary point a  and there are  n convex components of φ=(M,  a) with the left
boundary point a.

Note, that similar things can be done for the intersections of these three formulae with the
interval              (–∞, a). 

It is an simple exercise to write formulae Ψk,m,n(x) and Θk,m,n(x) which express the fact that x is
of the type (k, m, n) from the right and of the type (k, m, n) from the left, correspondingly.

Let Fh,i,j,k,m,n(x) be the conjunction of Θh,i,j(x) and Ψk,m,n(x).

Lemma 1 If Fh,i,j,k,m,n(x) is true on an infinite interval and j > 0 or n > 0, then both j and k are
equal              to 0. 

Proof. We consider only the case j > 0, because the other case is similar. Let  Fh,i,j,k,m,n(x) be
true on (a,b). Let c belong to (a,b). Then there is d from (a,b) such that for any x from (c, d) it
holds that                    f(x) = f(c). Let e be from (d,c). Then f(x) = f(c) = f(a) = f(e). Hence, n > 0.

Lemma 2 If F0,0,j,0,0,n(x) is true on an infinite interval (a,b), then the function f is constant on
(a,b).

Proof is obvious.

Note that if  the formula Fh,0,0,k,0,0(a)  is  true,  then  a is  a  point of a local  minimum.  If  the
formula F0,i,0,0,m,0(x) is true, then a is a point of a local maximum.

Theorem 3 There is no infinite interval I such that each point of this interval is a point of a
local minimum (maximum).

Proof. Assume the contrary, that such a function  f does exist. Throughout the proof of the
theorem all considered elements belong to the interval I.

Claim 1 We may assume that if f(a) = f(b), then a and b are incomparable. 

Proof of Claim1. Let E(x, y) be defined as f(x) = f(y). It is an equivalence relation. Consider
[a] = E(M, a). It contains no interval otherwise on this interval the formula Fh,i,j,k,m,n(x) holds with
j > 0 and k > 0.



There  is  a  minimal  convex  component  of  the  equivalence  class  [a],  because  any  finite
partially ordered set has a minimal element, and this convex component is a point. Let G(x) = (x
is a minimal point of [x]). Note that  G(M) is infinite. If  G(M) contains no interval there is a
minimal point a of G(M) as its minimal convex component. Since I is open there is b from I such
that b < a. Then any minimal element of [b] is less than a, for a contradiction. 

So we may assume for simplicity of notation that G(M) = I. Note that minimal elements of
any partially ordered set are incomparable. 

Notation Ua = the union of { x > a : f(y) > f(x) for all y in (a, x]}, 
{ x < a : f(y) > f(x) for all y in [x, a)}, and {a}.

That is the point a is a global minimum on Ua and Ua is a maximum convex set containing a
with this property. 

We denote a <U b iff Ua contains b, and a ◊ b iff either a = b or a <U b, or a <U b.

Claim 2 1)  Ua is a convex set. 

2) if a ≠ b, then Ua ≠ Ub.

Proof is obvious. 

Property 1 If the intersection of Ua and Ub is not empty, then either Ua is a subset of Ub or Ub

is a subset of Ua, for any a, b with a < b.

Proof. Let the intersection of Ua and Ub be non-empty and a < b. Assume also that f(a) < f(b).
If b is in Ua then Ub is a subset of Ua.

Let b be not in Ua. Then there is d such that a < d < b and f(d) < f(a) < f(b). Since d is in Ub,

so Ua < d < Ub. Then Ua  Ub is empty, for a contradiction. 

Property 2 The relation <U is a strict partial order.

Proof. Asymmetry and transitivity hold for <U.

Property 3 For any chain a0 <U a1 <U … <U an there is an+1 >U an.

Proof. Take an+1 be an arbitrary element of Ub where b = an.

Property 4 Let b <U a, c <U a and b < c. Then b ◊ c.

Proof. Since b <U a, c <U a, then a is in Ub  Uc and by Property 1 it holds that either Ub is a
subset of Uc, or Uc is a subset of Ub.

Property 5 For any a the set Ca = {x : x <U a} does not contain infinite <U-chain.

Proof. Assume the contrary that  Ca contains an infinite chain. Then  Ca contains an infinite

interval J. Let d be in J and m, n is in J  Ud be such that m < d < n.



By Property 4 it holds that m ◊ n, say, m <U n. Then n is in Um. Since Um is convex, so d is in
Um, that is f(m) > f(d), for a contradiction. 

Property 6 <U is a discrete order. 

Property 7 For any a, c with c <U a, there is b such that c <U b and (a ◊ b).

Proof. As b we take any element from Uc such that if a > c then b < c, and if a < c then b > c. 

Notation K is the set of all minimal elements respective to <U 

S(a) = {x : a <U x and there is no y with a <U y <U x}

Property 8. Sets S(a), where a runs over dom f, form a definable uniform partition of (dom f)
\ K.

Proof. If S(a)  S(b) is non-empty, then it contains c such that a <U c, b <U c. Then either a
<U b or b <U a. Then either a < b < c and c is not in S(a), or b < a < c and c is not in S(b), for a
contradiction. 

Property 9 K contains a minimal element.

Proof. Otherwise, it contains an infinite interval I. Let b be in I, and c in Ub  I. Then c >U b,
for a contradiction. 

Property 10 For all a it holds that S(a) is a subset of Ua.

Property 11 The set S(a) is finite for all a. 

Proof is similar to the proof of Property 9.

By partition K, S(a), a runs over dom f, we construct an equivalence relation E(x, y). Observe
that each E-class contains a minimal element with respect to <U. Properties 9 and 11 imply that E
is an infinite equivalence with finite classes. 

Let X consist of minimal elements of E-classes with respect to <. Then X is infinite. Let U be
a maximal convex component of X. Let a be in U. By properties 7 and 3 there is b <U a such that
b is not in X, b>a. 

Let c be in Ub with c>b. Since S(c) is not empty, it contains some d from X by property 3 and
S(c) > b by Property 10. Then d > b > a, both a and d belong to X, and b does not belong to X,
for a contradiction. 

The theorem is proved.
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ЖАРТЫЛАЙ РЕТТЕЛГЕН ӘЛСІЗ О-МИНИМАЛЬДІ ҚҰРЫЛЫМДАРДА
АНЫҚТАЛҒАН ФУНКЦИЯЛАРДЫҢ КЕЙБІР ҚАСИЕТТЕРІ

Мақалада  о-минимальділіктің  кейбір  жалпы  қорытындылары  қарастырылған.  Біз
жартылай реттелген әлсіз о-минимальді құрылымдарда анықталған кейбір функциялардың
қасиетін  қарастырамыз.  Біз  интер-валдың әрбір нүктесі  локальды минимум (максимум)
нүктесі болатын шексіз интервалдың жоқ екенін көрсетеміз.

Тірек  сөздер: жартылай  реттелген,  о-минимальділігі,  функция  қолданушы,  айқын
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НЕКОТОРЫЕ СВОЙСТВА ФУНКЦИЙ, ОПРЕДЕЛИМЫХ 

НА ЧАСТИЧНО УПОРЯДОЧЕННЫХ СЛАБО О-МИНИМАЛЬНЫХ СТРУКТУРАХ

В статье рассматривается некоторое обобщение о-минимальности. Мы рассматриваем
некоторые  свой-ства  функций,  определимых  в  частично  упорядоченных  слабо  о-
минимальных структурах.  Мы показываем,  что не существует  бесконечного интервала,
такого что каждая точка этого интервала есть точка локального минимума (максимума).

Ключевые  слова:  частично  упорядоченное,  o-минимальности,  пользователем
функций, выпуклых мно-жеств, локальный минимум (максимум).
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