А. В. АНДРЕЕВ, А. В. КУРЧАКОВ, Ф. К. РСПАЕВ

(ДТОО «Астрофизический институт им. Фесенкова», Алматы, Республика Казахстан)

ФОТОМЕТРИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ ЗВЕЗДЫ HD 200775

Аннотация. Приводятся результаты и анализ фотометрических и спектральных наблюдений звезды HD 200775 в 2005-2012 гг. Средние значения фотометрических параметров: V=7.40; B-V=0.41; V-R=0.52; V-I=0.90. Каких-либо заметных корреляций между ними не отмечено. В процессе обработки результатов измерений линии H_{α} в 2010-2012 гг. было подтверждено, что период изменения эквивалентных ширин равен P=1349.9 ± 6.3 дня. Максимум эквивалентных ширин достигается с некоторым опозданием относительно моментов, когда звезда находится в периастре. Смена отношений синей V и красной компонент R профиля линии V/R >1 на значение V/R <1 происходит гораздо чаще, чем период изменения блеска H_{α} . Определены абсолютные значения потока в линиях H_{α} и H_{β} для случаев, когда ЕW достигало максимума и минимума, и при этом было выявлено, что бальмеровский декремент (H_{α}/H_{β}) остаётся постоянным и равен (H_{α}/H_{β}) = 8.

Ключевые слова: Ае/Ве звезды Хербига; индивидуальные объекты – HD200775.

Тірек сөздер: Хербигтің Ае/Ве жұлдыздары HD200775 жекешеленген – объектілері.

Keywords: Ae/Be Herbig stars; individual object – HD 200775.

Введение. HD200775 (MWC 361) является одной из ярких звёзд типа Ae/Be Xербига. Объект расположен в центре области звёздообразования (в отражательной туманности NGC 7023), которая содержит около 15 молодых звёзд типа T Тельца и ИК источников низкой светимости. Вокруг звезды находится небольшая (около 10") HII область. В видимой области спектра звезды наблю-даются сильные эмиссионные линии водорода серии Бальмера. Линии водорода часто имеют двойной пик и переменную структуру. В спектрах присутствует запрещенная линия кислорода [OI] 6300. Линии HeI наблюдаются в абсорбции, а фотосферный спектр оценивается как B3e. Наиболее полный спектральный анализ по ранее выполненным наблюдениям проведён в работах [1, 2]. Характер изменения контуров линии и их интенсивностей таков, что приходится признать наличие взаимодействия звёздного ветра с внешней оболочкой, которая сама по себе неоднородна. Таким образом, очевидна необходимость продолжительных наблюдений, чтобы объяснить весь механизм взаимодействий.

Наблюдения. Спектральные и фотометрические наблюдения этого объекта были выполнены на метровом телескопе (обсерватория Ассы-Тургень, высота 2700 м)

Астрофизического института им. В. Г. Фесенкова в 2005-2012 годах. Для наблюдений был использован спектрограф UAGS, установленный в кассегреновском фокусе однометрового телескопа Цейсса. Приемник излучения – ПЗС-матрица ST8-Ei. Обратная дисперсия спектрографа 0.5 Å/пиксел. Наблюдения проводились в области линий H_α и H_β.

Параллельно со спектроскопией проводилась BVRI фотометрия объекта с помощью фотометра (в качестве приемника излучения ПЗС-матрица ST7).

Результаты фотометрических измерений. Фотометрические наблюдения были выполнены с помощью фильтров фирмы SBIG. Данные BVRI фотометрии объекта трансформированы в стандартную фотометрическую систему Johnson. Результаты приведены в таблице 1.

	JD				
Date	2450000+	V	B-V	V-R	V-I
1	2	3	4	5	6
05.09.2005	3619.242	7.40	0.41	0.52	0.92
28.10.2005	3672.194	7.42	0.42	0.52	0.89
29.11.2005	3704.316	7.39	0.42	0.47:	0.60
30.11.2005	3705.330	7.41	0.40	0.53	0.90
23.08.2006	3971.176	7.37	0.42	0.52	0.89
20.09.2006	3999.128	7.39	0.39	0.52	0.90
26.09.2006	4005.106	7.41	0.42	0.53	0.92
10.08.2007	4323.242	7.38	0.44	0.53	0.91
12.08.2007	4325.278	7.39	0.40	0.51	0.91
13.08.2007	4326.258	7.39	0.41	0.51	0.90
09.09.2007	4353.199	7.39	0.42	0.52	0.90
10.09.2007	4354.197	7.40	0.41	0.51	0.89
31.08.2008	4710.228	7.37	0.43	0.52	0.87
02.10.2008	4742.171	7.39	0.40	0.57	0.87
14.08.2009	5058.173	7.40	0.40	0.51	0.89
21.08.2009	5065.216	7.43	0.41	0.55	0.91
23.08.2009	5067.165	7.40	0.42	0.50	0.89

Таблица 1 – BVRI фотометрия HD200775

18.09.2009	5093.085	7.40	0.40	0.51	0.86				
14.10.2009	5119.117	7.42	0.40	0.52	0.89				
15.10.2009	5120.114	7.40	-	0.51	0.86				
20.10.2009	5125.107	7.40	0.42	0.51	0.84				
21.10.2009	5126.094	7.40	0.40	0.50	0.87				
14.11.2009	5150.086	7.44	0.35	0.51	0.90				
17.11.2009	5153.076	7.41	0.40	0.53	0.88				
20.11.2009	5156.065	7.40	0.35	0.51	0.87				
14.07.2010	5392.363	7.38	0.41	0.51	0.86				
11.08.2010	5420.282	7.39	0.39	0.51	0.87				
06.09.2010	5446.153	7.39	0.40	0.49	0.85				
12.10.2010	5482.110	7.39	0.41	0.50	0.87				
08.11.2010	5509.068	7.42	0.39	0.48	0.88				
03.08.2011	5777.218	7.39	0.40	0.52	0.87				
29.08.2011	5803.189	7.38	0.40	0.53	0.87				
03.09.2011	5808.190	7.31	0.47	0.48	0.88				
27.09.2011	5832.073	7.44	0.40	0.50	0.89				
18.06.2012	6097.349	7.38	0.41	0.57	0.88				
В столбцах	х таблицы 1 да	аны: 1 – дат	а наблюдени	й; 2 – юлиан	ская дата; 3				
– звездная величина в фотометрической полосе V; 4-6 – значения									
показателей ц	вета (B-V), (V	-R) и (V-I),	соответствен	IHO.					

Как видно из таблицы 1, значения фотометрических параметров находятся в пределах: V=7.37–7.44; B-V=0.35–0.47; V-R=0.48–0.57; V-I=0.84–0.93 со средними значениями: V=7.40; B-V=0.41; V-R=0.52; V-I=0.90. Ошибка измерений в среднем составляет ±0.006. Каких-либо замет-ных корреляций между вариациями фотометрических параметров, а также их со спектральными изменениями нами не обнаружено.

Результаты спектральных измерений. Ниже в таблицах 2 и 3 приводятся результаты наблю-дений линии H_α.и H_β соответственно.

Как было отмечено выше, водородные линии имеют двойной пик и переменную структуру, т.е. на эмиссионную линию накладывается линия поглощения. Для иллюстрации на рисунке 1 изобра-жен спектр HD200775 за 28 августа 2008 год в области линии Н_α. На этом же спектре обозначены линии других элементов. Практически все

спектры имеют один и тот же набор эмиссионных линий и линий поглощения. Однако для разных дат наблюдений их контуры и интенсивность могут существенно отличаться (см. рисунок 2).

DATE	JD2400000 +	$\mathrm{EW}_{\mathrm{Ha}}$	I _b	I _a	Ir	V_{ba}	V _{ra}	V/R	V_{abs}
05.09.2005	53619,233	72,9	10,24	7,50	7,68	-90	30	1,33	50
28.10.2005	53672,183	66,4	8,61	6,03	7,35	-70	45	1,17	30
29.11.2005	53704,324	66,4	8,10	6,54	7,79	-70	45	1,04	20
30.11.2005	53705,312	62,9	7,53	6,22	7,34	-70	45	1,03	20
18.08.2006	53966,328	59,9	7,55	5,13	6,03	-90	43	1,25	30
26.09.2006	54005,086	58,0	7,24	5,28	5,36	-70	45	1,35	0
10.08.2007	54323,212	60,9	7,25	6,25	6,85	-70	45	1,06	10
12.08.2007	54325,257	61,2	7,35	5,63	6,94	-45	70	1,06	0
13.08.2007	54326,238	64,0	7,70	5,71	7,07	-45	70	1,08	0
09.09.2007	54353,188	62,8	7,56	6,18	7,20	-70	45	1,05	10
10.09.2007	54354,170	61,1	7,45	6,21	7,09	-70	45	1,05	10
28.08.2008	54707,278	114,4	12,18	11,86	14,95	-20	70	0,81	-80
02.10.2008	54742,134	112,9	11,92	12,58	16,07	-45	45	0,74	-50
21.08.2009	55065,201	66,8	8,14	6,98	8,40	-45	45	0,97	-20
23.08.2009	55067,145	67,5	8,36	7,12	8,26	-70	45	1,01	-5
14.10.2009	55119,065	63,5	7,81	7,12	7,22	-45	45	1,08	0
15.10.2009	55120,076	61,1	7,71	6,74	7,16	-45	45	1,07	0
20.10.2009	55125,075	62,7	7,93	7,09	7,32	-45	45	1,08	0
21.10.2009	55126,060	62,6	8,06	7,03	7,30	-70	40	1,10	5
14.11.2009	55150,050	60,7	8,10	6,47	6,83	-90	45	1,18	30
17.11.2009	55153,040	67,9	8,89	7,03	7,76	-70	70	1,16	0
20.11.2009	55156,033	65,2	8,01	6,97	7,36	-70	45	1,08	20
19.12.2009	55185,009	58,6	6,47	5,77	7,01	-45	70	0,96	-10
11.07.2010	55389,193	48,7	6,13	4,44	5,24	-70	90	1,17	-30

Таблица 2 – Результаты наблюдений HD200775 в линии H_{α}

14.07.2010	55302 3/1	57 /	7.03	1 98	631	_70	70	1 1 1	-5	
14.07.2010	55592,541	57,4	7,05	4,90	0,51	-70	70	1,11	-5	
11.08.2010	55420,194	56,7	6,66	4,34	6,57	-70	70	1,01	-15	
05.09.2010	55445,113	56,7	6,66	4,34	6,57	-70	70	1,01	-15	
11.10.2010	55481,061	60,4	7,65	3,96	7,20	-70	70	1,05	-15	
12.10.2010	55482,090	61,9	7,75	4,30	7,43	-45	70	1,04	-30	
08.11.2010	55509,056	54,8	6,87	4,12	6,60	-70	70	1,04	-5	
02.08.2011	55776,204	64,6	7,91	5,41	7,67	-70	70	1,03	-40	
03.08.2011	55777,134	64,9	7,90	5,17	7,81	-45	70	1,01	-40	
29.08.2011	55803,148	61,0	7,41	5,05	7,13	-45	70	1,04	-40	
03.09.2011	55808,154	60,1	7,74	5,01	6,66	-70	70	1,16	-30	
27.09.2011	55832,086	70,8	8,94	6,33	7,81	-70	45	1,14	-5	
18.06.2012	56097,284	106,4	12,49	10,36	11,14	-45	70	1,12	-5	
22.06.2012	56101,281	107,5	14,02	10,39	12,27	-70	70	1,14	-15	
19.07.2012	56129,270	105,3	13,69	11,00	12,12	-70	45	1,13	-40	
21.08.2012	56161,111	108,5	14,94	12,03	12,21	-70	45	1,22	-15	
23.09.2012	56194,068	104,7	14,87	10,91	11,62	-70	70	1,28	-20	
10.10.2012	56211,046	100,6	13,88	10,01	12,08	-45	90	1,15	-20	
17.11.2012	56249,018	91,1	12,02	9,39	11,35	-70	70	1,06	-20	
В столбцах т	таблицы 2	даны:	1 — дат	га набли	одений;	2 – ю	лианска	ая дата	ı; 3 –	
эквивалентная ш	ирина в анг	стремах	; 4	- 6 – инт	енсивно	сти син	ей, абсо	орбцион	ной и	
красной компоне	ент профил	и линии	норми	рованны	х к неп	рерывн	ому сп	ектру;	7, 8 –	
скорости синей	и красной	компоне	енты пс	о отноше	ению к	абсорби	ционной	і линии	и; 8 –	
отношение макс	симальных	значени	ий оста	точной	интенси	ивности	синей	і и кр	асной	
компонент; 9 – скорость абсорбционной компоненты.										

Таблица 3 – Результаты наблюдений HD200775 в линии H_β

DATE	JD2400000	EW _{Hb}	I _b	Ia	Ir	V_{ba}	V _{ra}	V/R
06.09.2005	53620,268	2,5	0,78	0,01	0,54	-120	60	1,44
28.10.2005	53672,172	2,0	0,52	-0,04	0,48	-120	60	1,08
29.11.2005	53704,333	1,8	0,41	-0,05	0,51	-60	90	0,80

30.11.2005	53705,322	1,8	0,39	-0,15	0,51	-90	90	0,76
23.08.2006	53971,134	1,0	0,29	-0,22	0,39	-90	90	0,74
26.09.2006	54005,095	1,3	0,46	-0,17	0,3	-120	90	1,53
10.08.2007	54323,219	1,6	0,31	0,03	0,46	-120	90	0,67
12.08.2007	54325,267	1,7	0,42	0,01	0,45	-90	60	0,93
13.08.2007	54326,248	2,1	0,52	-0,04	0,51	-90	60	1,01
09.09.2007	54353,179	3,3	0,39	-0,05	0,44	-80	60	0,88
10.09.2007	54354,175	1,3	0,34	-0,04	0,35	-60	90	0,97
28.08.2008	54707,278	5,8	1,06	0,07	1,21	-60	40	0,87
02.10.2008	54742,134	5,8	1,01	0,98	1,19	-90	120	0,84
21.08.2009	55065,201	2,6	0,57	0,21	0,52	-60	90	1,09
23.08.2009	55067,149	2,7	0,62	0,16	0,52	-90	90	1,19
14.10.2009	55119,068	1,5	0,36	0,1	0,42	-90	90	0,85
15.10.2009	55120,081	1,4	0,31	0,09	0,41	-90	120	0,75
20.10.2009	55125,077	1,9	0,49	0,09	0,38	-90	90	1,29
21.10.2009	55126,065	2,2	0,54	0,08	0,54	-60	90	1,00
14.11.2009	55150,056	1,6	0,45	-0,05	0,42	-90	90	1,07
17.11.2009	55153,046	2,4	0,54	0,18	0,54	-90	60	1,00
20.11.2009	55156,037	2,7	0,51	0,34	0,51	-60	120	1,00
19.12.2009	55185,012	1,5	0,27	-0,02	0,40	-120	90	0,67
14.07.2010	55392.310	1,5	0,46	-0,18	0,41	-90	90	1,12
11.08.2010	55420.223	2,1	0,50	-0,10	0,53	-60	90	0,94
11.10.2010	55481.074	2,3	0,57	-0,03	0,58	-120	60	0,98
12.10.2010	55482.081	2,6	0,59	-0,06	0,65	-120	90	0,90
10.11.2010	55511.043	1,4	0,34	-0,12	0,42	-60	90	0,80
02.08.2011	55776.255	2,6	0,61	0,08	0,5	-90	90	1,22
03.08.2011	55777.187	2,4	0,53	-0,05	0,54	-120	90	0,98
29.08.2011	55803.158	1,7	0,37	-0,05	0,51	-120	120	0,72
03.09.2011	55808.163	1,6	0,51	-0,22	0,33	-120	90	1,54

27.09.2011	55832.095	2,5	0,65	-0,02	0,57	-90	90	1,14
18.06.2012	56097.313	5,5	1,00	0,65	0,96	-90	90	1,04
19.07.2012	56129.254	5,1	1,14	0,54	1,05	-60	120	1,08
21.08.2012	56161.119	5,4	1,32	0,45	1,02	-90	90	1,29
23.09.2012	56194.076	4,9	1,24	0,23	0,98	-90	90	1,26
10.10.2012	56211.056	4,1	0,97	0,09	0,98	-90	90	0,98
17.11.2012	56249.027	3,3	0,85	0,09	0,85	-90	60	0,99
В столбцах	к таблиц 3.1 и	3.2 дань	I: 1 — да	та набли	одений;	2 – юли	анская да	ата; 3 –
эквивалентная	ширина		В	ангстрем	Max; 4-6	– интен	сивности	синей,
абсорбционной	й и красной ко	мпонент	профил	и линии	нормиро	ованных		к
непрерывному	спектру; 7, 8 -	- скорос	ти синей	і и красн	юй комп	оненты	по отнош	ению к
абсорбционно	й линии;			8 – от	ношение	максим	альных зн	ачений
остаточной ин	тенсивности си	ней и кр	асной ко	мпонент	`-			

Рисунок 1 – Красная область спектра HD200775

Рисунок 2 – Профили линии Нα для разных дат

Положение максимальной интенсивности эмиссии H_{α} соответствует гелиоцентрической длине волны λ_0 =6562.85. Абсорбционная компонента может быть смещена как в синюю, так и в красную область спектра. Результаты наблюдений, выполненных в АФИФ, и наблюдения других авторов [1, 2] показывают, что эквивалентная ширина линии H_{α} меняется со временем.

Как показано в работе [8], имеется периодический характер изменения значений эквивалентной ширины. И более того, имеется тенденция к росту эквивалентной ширины со временем. Сравнивая максимумы EW для разных эпох, было получено соотношение:

$$EW(t) = EW_0(t_0) + 0.0051 \cdot (t - t_0), \qquad (1)$$

где t=JD-t₀, t₀=2449575.83

Исправленные за тренд эквивалентные ширины EW (приведённые к эпохе t₀) изображены на рисунке 3.

Рисунок 3 – Исправленные за тренд эквивалентные ширины EW

В качестве функциональной модели EW(t) для получения периода был выбран первый член разложения в ряд Фурье:

$$EW(t) = a + b \cdot \cos(\frac{2\pi \cdot t}{p} + f), \qquad (2)$$

где t=JD-2400000, p – период, f – фаза.

Для поиска параметров a, b, p, f был использован математический пакет программ AXUM 5.0. Наиболее вероятными значениями оказались – a=59.9±1.1 (Å), b=29.6±4.5 (Å), p=1349.9±6.3 (дней), f=3.0±1.1 (радиан).

Результаты аппроксимации наблюдаемых данных формулой (2) при полученных параметрах представлены на рисунке 3 в виде сплошной линии. Причины такого изменения эквивалентных ширин нам неизвестны. Но можно сделать некоторые предположения. Интерферометрические исследования показали, что HD200775 – тесная двойная звезда с суммарной массой $M_1+M_2=10.4M_{\Theta}[4]$, при этом $M_2=3.3[1]$. Орбита двойной системы очень вытянутая. В периастре расстояние между объектами менее 4 а.е. В моменты таких сближений происходит сильное взаимодействие между звёздами, способное внести сильную пертурбацию в околозвёздной оболочке и существенно увеличить яркость в линии H_{α} . По разным данным периоды обращения колеблются $P=1341\pm41[2]$ и $P=1412\pm54[3]$, $P=1377\pm25$ [4], что очень хорошо совпадает с полученным нами периодом изменения величины EW. Один из моментов сближения звёзд в периастре $T_0(JD)=2449150\pm88$. Учитывая значения периода, мы можем найти моменты сближения звёзд $T(JD)=T_0(JD)+kP$, где k=1,2,3...

Таблица 4 – Даты максимальных значений EW и моментов прохождения звезды через периастр

	T(JD)	$T_0(JD)+1P$	T ₀ (JD)+2P	$T_0(JD)+3P$	T ₀ (JD)+4P
1	2	3	4	5	6
P=1341	2449150	2450491	2451832	2453173	2454514
P=1377	2449150	2450527	2451904	2453281	2454638
EW _{max}		2450714	2452070		2454742

В таблице 4 в колонке 1 указаны значения минимального и максимального возможных пе-риодов обращения двойной звезды, а в колонках 2-6 моменты прохождения звезды через периастр, для EW_{max} моменты достижения максимума. Как видно из таблицы 4, в моменты сближения звёзд эквивалентная ширина EW достигает максимума с некоторым опозданием. Последнее можно объяснить процессами, происходящими в газовой оболочке.

Однако не всё так однозначно. Изменения отношений синей компоненты профиля к красной (V/R) в других объектах часто объясняют двойственностью звездных систем, но для HD 200775 этот механизм не проходит. Наши наблюдения показывают, что смена отношения V/R >1 на значение V/R < 1 происходит гораздо чаще, чем период изменения блеска H_{α} . У нас, к сожалению, не хватает данных, чтобы установить, имеется ли периодичность изменения V/R. По крайней мере, остаётся неясным, как связать эти изменения с двойственностью звезды.

Кроме того, были определены абсолютные значения потоков в линиях Н_а и Н_в для случаев, когла EW лостигало минимума. B качестве максимума И спектрофотометрического стандарта использовалась звезда λ Cyg Sp (B5). При этом обнаружено, что бальмеровский декремент (На/Нв) остаётся практически постоянным и равен (H_a/H_b)=8. Результаты измерений абсолютных потоков в линиях Η_α и Η_β, исправленные за межзвездную экстинкцию для значений параметра R_v=3.1 (в строчках 3,5,7,9) и R_v=5.0 (в строчках 4,6,8,10), приведены в таблице 5.

Таблица 5

Дата	EW	Ηα	EW	Нβ	Sp(α)	Sp(β)	EW(O	V	R	
набл.	α	10-10	β	10-13	эрг/см ² *с*	эрг/см ² *с*	I)			
		эрг/см ²		эрг/см2*	А	А				
		*с		c						H _a /H

										β
1	2	3	4	5	6	7	8	9	10	11
28.08. 08	114. 4	15.1	5.9	_	132.5	_	0.10	7.37	6.85	_
		37.8		_	339	_				_
02.10. 08	112. 9	14.0	5.8	1896. 9	124.4	326.5	0.15	7.39	6.82	7
		35.9		5190	318	893.2				7
21.08. 09	66.8	8.6	2.6	907.9	128.2	347.2	0.11	7.43	6.88	9
		22.1		2484	328	950				8
23.08. 09	67.6	8.7	2.7	931.3	129.1	343.6	0.17	7.40	6.90	9
		22.3		2548	330	940				8
Вко	олонках	к таблицы	5 дань	л: 1 — дат	га наблюден	ния объекта	а, 2 – экв	ивален	тная ш	ирина

В колонках таолицы 5 даны: 1 – дата наолюдения объекта, 2 – эквивалентная ширина H_{α} , 3 – абсолютный поток в H_{α} , 4 – эквивалентная ширина H_{β} , 5 – абсолютный поток H_{β} , 6, 7 – абсолютный поток непрерывного спектра в районе линий H_{α} и H_{β} , 8 – эквивалентная ширина линии (OI 6300A), 9, 10, – звёздные величины в фотометрических полосах V и R, 11 – бальмеровский декремент (отношение потоков H_{α}/H_{β}).

Результаты измерений эквивалентных ширин запрещенной линии [OI] 6300 Å хорошо согла-суются с результатами наблюдений других авторов (0.12 - [5]; 0.14 - [6]; 0.10 - [7]) и, по-видимому, не подвержены значительным изменениям на протяжении многих лет.

Заключение. В результате проведенных исследований были определены следующие пара-метры и характеристики объекта HD 200775:

- значения фотометрических параметров находятся в пределах: V=7.37 - 7.44; B-V=0.35 - 0.47; V-R=0.48 - 0.57; V-I=0.84 - 0.93 со средними значениями: V=7.40; B-V=0.41; V-R=0.52; V-I=0.90. Каких-либо заметных корреляций между вариациями фотометрических параметров, а также их со спектральными изменениями нами не обнаружено.

- по результатам наблюдений 2010-2012 гг. подтвержден период изменения эквивалентных ширин, равный P=1349.9 ± 6.3 дня.

- выявлено, что эквивалентная ширина EW достигает максимума с некоторым опозданием относительно моментов прохождения звезды через периастр (минимальное расстояние между звёздами около 4 а. е).

- обнаружено, что смена отношений синей компоненты профиля к красной V/R >1 на значение V/R <1 происходит гораздо чаще, чем период изменения блеска H_α. Из-за недостаточного коли-чества наблюдений не удалось обнаружить, является ли это событие периодическим. Однако оно происходит чаще, чем прохождение звезды через периастр. Для выяснения причины этого явления требуются дальнейшие исследования.

- определены абсолютные значения потока для линий H_{α} и H_{β} для случаев, когда EW достигало максимума и минимума, и обнаружено что Бальмеровский декремент (H_{α}/H_{β}) остаётся постоянным и равен (H_{α}/H_{β})=8. Такое постоянство, возможно, связано с постоянными физическими условиями n_e см⁻³ и T_e K, а возрастание эквивалентной ширины в момент прохождения звезды через периастр можно объяснить дополнительным поступлением вещества в оболочку через приливные взаи-модействия между звёздами.

Работа выполнена в рамках республиканской программы 002 «Прикладные исследования в области космической деятельности».

ЛИТЕРАТУРА

1 Pogodin M.A. et al. A new phase of activity of Herbig Be star HD 200775 in 2001: Evidence for binarity // A&A. – 2004. – Vol. 417. – P. 715.

2 Miroshnichenko A.S. et al. High State of Ha Emission Activity of the Herbig Be Star HD 200775 // PASP. – 1998. – Vol. 110. – P. 883.

3 Alecian E. et al. Characterization of magnetic field of the Herbig Be star HD 200775 // MNRAS. – 2008. – Vol. 385. – P. 391-403.

4 Monnnier J.D., at al. Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars // Ap. J. – 2006. – Vol. 647. – P. 444.

5 Böhm T.& Catala C. Forbidden lines in: the [OI] (1F) 6300.31 Å and 6363.79 Å lines. I. Observations and qualitative analysis // A&A. – 1994. – Vol. 290. – P. 167-175.

6 Corcoran M. & Ray T.P. Forbidden emission lines in Herbig Ae/Be stars // A&A. – 1997. – Vol. 321. – P. 189-201.

7 Hernandez J., et al. Spectral analysis and classification of Herbig Ae/Be stars // A.J. – 2004. – Vol. 127. – P.1 682-1701.

8 Андреев А.В., Курчаков А.В., Рспаев Ф.К. HD 200775: Результаты и анализ спектральных измерений линии Hα // Известия НАН PK. – 1911. – N.4. – С. 27-36.

REFERENCES

1 Pogodin M.A. et al. A&A. 2004. 417, 715.

2 Miroshnichenko A.S. et al. PASP. 1998. 110, 883.

- 3 Alecian E. et al. MNRAS. 2008. 385, 391.
- 4 Monnnier J.D., at al. Ap.J. 2006. 647, 444.
- 5 Böhm T.& Catala C. A&A. 1994. 290, 167.
- 6 Corcoran M. & Ray T.P. A&A. 1997. 321, 189.
- 7 Hernandez J., et al. A.J. 2004. 127, 1682.

8 Andreev A.V., Kurchakov A.V., Rspaev F.K. Izvestija NAN RK, 1911, N.4, 27(in Russ.).

Резюме

А. В. Андреев, А. В. Курчаков, Ф. К. Рыспаев

(«Фесенков атындағы Астрофизика институты» ЕЖШС, Алматы, Қазақстан Республикасы)

НД 200775 ЖҰЛДЫЗЫНЫҢ ФОТОМЕТРЛІК ЖӘНЕ СПЕКТРЛІК ЗЕРТТЕУЛЕРІ

Мақалада 2005–2012 жылдар аралығында HD 200775 жұлдызының фотометрлік және бақы-лауларының нәтижелері берілген. Фотометрлік спектрлік талдауы және B-V=0.41; V-R=0.52; V-I=0.90. параметрлердің орташа мәндері: V=7.40; Олардың арасында байқалатын қандай да бір корреляция белгіленбеген. 2010-2012 жылдардағы Н_а сызығын өлшеу нәтижелерін өңдеу процестері кезінде, баламалы енінің өзгеру периоды P=1349.9 ± 6.3 күнге теңдігі дәлелденді. Жұлдыз периастрда болған кезде, моментке қатысты бірне-ше рет кешігумен баламалы еннің максимумына жетеді. Көк V және қызыл R компоненттердің қатынасы V/R >1 сызықтарының профилі V/R <1 мәніне ауысуы, H_α жарқырауының өзгеру периодына қарағанда жиі болып тұрады. EW максимумге және минимумге жеткен жағдайлар үшін Н_α және Н_β сызықтарының абсолютті ағынының мәні анықталды, сонымен бірге бальмер декременті (H_a/H_b) тұрақты болып қалады және ол $(H_{\alpha}/H_{\beta}) = 8$ тең.

Тірек сөздер: Хербигтің Ае/Ве жұлдыздары; HD200775 – жекешеленген объектілері.

Summary

A. V. Andreev, A. V. Kurchakov, F. K. Rspaev

PHOTOMETRIC AND SPECTRAL INVESTIGATION OF HD 200775

In paper the results and analysis of photometric and spectral observations of star HD 200775 are given, which were carried out in 2005-2012. The average values of photometric parameters are: V=7.40; B-V=0.41; V-R=0.52; V-I=0.90. Any detectable correlations between them were not marked. In process of result measurements treatment of H_a line in 2010-2012 it was confirmed that the period of equivalent width variations is equal to P=1349.9±6.3 days. The maximum of equivalent widths is achieved with some delay relatively to the moments, when the star is in periastron. The replacement of ratios of blue component V and red one R of line profile V/R >1 on value V/R <1 occurs much often than the period variation of H_a brightness. Moreover it was derived the absolute flux values for H_a and H_β lines in cases when EW reached maximum and minimum, and for that it was derived that the Balmer decrement (H_a/ H_β) remains constant and was equal to (H_a/ H_β)=8.

Keywords: Ae/Be Herbig stars; individual object - HD 200775.

Поступила 2.09.2013г.