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ON THE COLLISIONAL ONE-COMPONENT PLASMA

DIELECTRIC FUNCTION

Summary

Asymptotic properties of the collisional one-component plasma dielectric function in the
random-phase (RPA) and Mermin approximation, with a constant collision frequency, are
analyzed from the point of view of the verification of sum rules. The latter are the power
frequency moments of the loss function, a positive even function of frequency directly related to
the imaginary part of the inverse dielectric function. The zero moment is shown to coincide with
that of the RPA, the f-sum rule is satisfied, and the fourth moment sum rule is verified only
partly, without taking the correlations into account. These drawbacks of the Mermin model
expression for the dielectric function define the realm of applicability of this approximation.
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Introduction. Modelling of the dielectric function &(k,@) (DF) or the inverse dielectric

function, ¢~ (k,®) (IDF) of Coulomb systems is actively discussed in the literature, in particular,

because the corresponding loss function,
L (k,0)=-Ime™ (k,®)/ wi 0, (1)
which is even for Vo € R, determines the polarizational stopping power of such systems [1].

The Lindhard dielectric function [1] of a collisionless one-component plasma, &zp, (k,a)),

was generalized by Mermin [2] and later, by Das [3] who used the distribution function variation



method, to take the collisions into account in the relaxation-time approximation. Mathematical
properties and different versions of the Lindhard DF were further considered in a number of
elaborate publications, see e.g., [4, 5].

In the present work we study the asymptotic properties of the RPA and Mermin dielectric
functions. Precisely, we wish to determine here whether the sum rules (other than the f~sum rule)
are satisfied by these models.

Though the derivation of the Mermin dielectric function,

(o0+iv) (&g, (k0 +iv)—1)
Expa (K +iv)=1 ()
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ey (k,o)=1+

w+iv

guarantees the conservation of the local number of charged particles, this model is valid only in
the first order in the total electrostatic potential energy and presumably cannot be applied to
describe the properties of the plasma liquid phase at any corresponding value of the coupling

parameter I = e’ /a, where B =k,T is the system temperature in energy units and

a=-/3/4rn is the Wigner-Seitz radius, n being the number density of charged particles, and at
any degeneracy. Nevertheless, it is actively employed lately under extreme physical conditions,
see, e.g., [6, 7].

The collision frequency V is determined, e.g., by the Spitzer formula [6] or in the general
Green-Kubo context [8]. We will be proceeded with the discussion of the influence of the
dynamic collision frequency (see [7] and references therein) elsewhere.

1. The asymptotic expansion and the sum rules. Since the definition of the dielectric
function of homoge-neous  non-magnetized  (multi-species) plasmas 1s  just
D(k,w)=¢(k,0)E(k,»),and the «cause» is the external field/displacement D(k.0), the IDF is a
genuine response function, i.e., the Kramers-Kronig relations are definitely valid for this
function:

r Img’l(k,a)) do

e (kyw)=1+ T————~—, Imw>0. 3
A 3)
or, particularly,
f do
g (k,0)=1+PyIme™ (k,0)—, 4)
o 7w

P standing for the principal value of the integral.

Consider the convergent sum rules for the IDF &' (k,w), which are effectively the first three
finite non-zero power moments of the loss function [9]:
r
C (k) = Ta)[L (k,w)da), [=0,2,4,
o (5)
Co(k) =1-¢7"(k,0), C,=w,, C,(k)>0.



Consider also the characteristic frequencies,

=,C, /C =,/ J1-& kO coz =,/C, /a) (6)

It is important that the explicit forms of these characteristics can be derived independently of a
particular DF or IDF model of an equilibrium plasma.

The expression for the zero moment follows immediately from (3) and (4):

r -1
I k,
c,(k)=-1 dea)ZI—a‘l (k,0)> 0. (7)
Ty 1)
Then, it is easy to see that
;
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and thus construct the IDF asymptotic expansion along any ray in the upper half-plane,
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Within the RPA the static dielectric function is defined as
r
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Here g is the Bohr radius and f,, ( p)Z[eXp( BE( p)—n)-f-l:l_l is the Fermi-Dirac distribution

density with £ ( p) =n’p*/ (2m) . The dimensionless chemical potential 7 = i is defined by the
2
normalization condition, F,, (17)= §D3/2 with

¢

Fo- x"dx
Y ;I' exp(x—n)+1’
D =BE, = pmv}/2= pr’k2m=pr* (3x°n)" /2m, (11)

where F, (77), E., Uy, and kr are the V -th order Fermi integral, Fermi energy, velocity, and

wavenumber, respectively.



In the Mermin approximation &, (k,@=0)= ¢, (k,0), ie., the zero sum rule is not
satisfied since the static IDF &' (k,0) (related via the fluctuation-dissipation theorem to the

system dynamic structure factor) takes the correlations into account while &, (k,0) does not.

Notice also that the second moment is exactly the f-sum rule (C, = 60127 ). We provide also an

explicit expression for the 4™ moment. In a coupled OCP (see [9] and references therein):
C,(k)=w}[1+W,(k)], (12)
and the correction of the fourth moment contains only two contributions:
W,(k)=V(k)+U|(k). (13)

The first contribution is produced by the kinetic term of the system Hamiltonian, in the classical
case V(k) coincides with the known Vlasov contribution to the dispersion relation,

V,(k)y=3k>/ (47T nezﬂ). The second contribution to the fourth moment stems from the interaction

contribution to the system Hamiltonian:

r
19 (S(p)-1) (p.k)dp. (14)

= 2
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where we have introduced the angular factor f ( D, k) :%_ ﬁ{ - +( : :3 ) In P +/]§| and the
p pP-

static structure factor S(k).
Let us now study the power moments of the OCP model dielectric functions.

The RPA dielectric function asymptotic form for Imwi 0 was determined in [5]:
Exps (K, W > 0);
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We conclude that, as expected, within the RPA the sum rule (12) is satisfied only partially,
without taking the correlation contribution U(k) into account.

The Mermin loss function satisfies the f~sum rule by construction. The situation with the
fourth sum rule is quite different. It is not very difficult to calculate the high-frequency limit of
the fourth power moment integrand to see that if the collision frequency is kept constant,
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which means that in the «classical» Mermin approximation the fourth power moment of the loss
function diverges and the corresponding sum rule (12) is not satisfied at all. In other words, the
asymptotic expansion of the Mermin model DF with a constant collision frequency is just

ey (k,w—>o); 1-—L. (16)

This behavior takes place because at high frequencies the imaginary part of the Mermin DF is

determined by the imaginary part of the product (1+iv/ a))(ERpA (k,o+iv) —1) and is reduced to

the rational form (—VCO; / 603), which significantly differs from the corresponding exponential

factor characteristic for the RPA. This latter factor with the zero asymptotic expansion
guarantees the convergence of all power moments of the RPA loss function, while in the Mermin
approximation only the second power moment «survivesy.

Numerical results. In this Section we wish to check the numerical importance of the above
drawbacks of the Mermin approximation of the OCP dielectric function. It is clear that in a TCP
the inconsistencies of the Mermin model will reveal themselves even stronger, we hope to
demonstrate it in our further publications.

We have estimated the static collision frequency as it was suggested in [8]:

r ~ 2
1% 3/2 dk nge (k)Sll (k) - Sei (k)g'lll
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where the partial static structure factors were obtained within the HNC approximation [10] for
the Deutsch pseudopotential,

®, (r)ZZqu(ez/r)[l—exp(—r//lab)], (18)
without the exchange corrections,

2
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The values of the moments C, (kp), C,, and C, (kp) presented in Table 1 were calculated

for n=10"%cm™ (7,=2.5256). The values marked «HNC» were obtained within the HNC
approximation for the pseudopotential (18) and those marked «Mermin» were evaluated by
direct integration of the power moments of the Mermin loss function. As it was expected, the f-
sum rule is satisfied by the Mermin model with a high precision. The deviations of the Mermin

power moments C, (k) and C,(k;) from the sum rule values are quite significant.



Table 1 — The values of the moments

B'=5c¢elV B =10 eV B =100 eV
Moments HNC Mermin HNC Mermin HNC Mermin
G, 0.8163 0.4835 0.5396 0.2944 0.0813 0.0071
C,/ co; 1.0000 1.0004 1.0000 1.0004 1.000 1.004
C, /a); 3.4101 4.9582 5.0299 6.8365 35.690 40.068

We believe that these deviations once more stress that the Mermin IDF is not exactly a
response function. This question deserves further investigation.

Conclusions. It is shown that even the «collision-corrected» Mermin approximation does not
satisfy the exact sum rules and other exact relations valid for one-component plasmas.

In other words, the realm of applicability of some widely used approximations is established.

The problem to be studied soon is to which extent the above defects of the Mermin
approximation might influence the utility of the Mermin model for the calculation of the
stopping power of strongly coupled plasmas at finite temperature [11].
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COKTBIFBICTBI BIP KOMITIOHEHTTI IIVTASMAHBIH

JUDJIEKTP ®YHKIMAIIAPBI TYPAJIBI

TypakTbl COKTBIFbICY OKHUmIriMeH XaocTel ¢azamapasiH (XDPXK) xoHe MepmuH
KYBIKTayJapblHAa KOCBIHIBLIAP 3aHAAPBIH TEKCEPY KOMETrIMEH COKTBIFBICTHI, Olp KOMIAHEHTTI
IUTa3MaHBIH JTURJICKTP (YHKIMAJIAPBIHBIH AaCHMOTO-THKAJIBIK KacHeTTepi 3epTTeniHnai. by
peTTeri KOChIHAbUIAP XKOWbUTY (DYHKIUSHBIH KMUIIK MOMEHTTEp1 OOJIbIN TaObLIaAbl, SFHU Kepi
TVRJIEKTP (PYHKIMSUIAPBIHBIH JKOopaMay OeJliriMeH Tikenel OallaHbICaThIH OH KYIT KHUTIK
ooiipiama gynkmusap. Hemmik moment X®XK MoHIMEH 1om KeneTiHi, f-KOCBIHIBUIAp 3aHbI
OpBIHJANATBIHBl JKOHE KYyHeneri e3apa OalylaHbICTap €CKEpUIMEreH TOPTIHII MOMEHTTIK
KOCBIH/ABUIAD 3aHbl JKapThlIail KaHaraTTaH-AbIPbUIATBIHBI KOPCETUIreH. byn  auaiexTp
GYHKOUACHL  YUIIH  MOJEIBAIK MepMHH IIaMachlHBbIH KEMIIUIIKTEPl OCHI  KYBIKTayJIbIH
KOJIJaHbUIAThIH aliMarblH aHBIKTANHIbI.

Kiar ce3iep: craTHKaIbIK KYPBUIBIMABIK (GakTopiap, KOCBIHIBLUIAD €pekKenepi, MOMEHTTEP
amici.
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O JINDJIEKTPUYECKOM ®YHKIINU

CTOJIKHOBUTEJIbBHOM OJHOKOMIIOHEHTHOM ITJIA3BMbI

M3y4yeHsl acCUMITOTHUYECKUE CBOMCTBA U IPOBEACHA IPOBEpPKA BBIMOJIHEHUS INPAaBUI CyMM
UL TUDJIEKTPUYECKOH  (DYHKIIMHM  CTOJNKHOBHTEIBHOM  OJHOKOMIIOHEHTHOM IUIa3Mbl B
npubnmxenusx xaotuueckux asz (IIXD) u MepMuHa ¢ MOCTOSIHHOW YacTOTOM CTOJKHOBEHHSI.
[Tpu >TOM mpaBWIIaMU CYMM SIBIISIFOTCSI YaCTOTHBIE MOMEHTBHI (DYHKIIUH TTOTEPbH, SBISIOMICHCS
MOJIOKUTEIBHON 4eTHON (DYHKIMEH 4acTOThI, HEIIOCPEICTBEHHO CBA3aHHOW ¢ MHUMOM YaCThIO
oOpaTtHO¥ nudnexTpudeckoi ¢pyHkuun. [Tokazano, 4To HyJI€BOH MOMEHT COBIAIAET C TAKOBBIM B
[TX®, f-mpaBwmiIo CyMM BBITIOTHSETCS, & YSTBEPTOC MOMEHTHOE MTPABUIIO CYMM YJIOBJIETBOPSIETCS
JIMIIb YaCTUYHO, B HEM HE YUUTHIBAIOTCA KOPPEISLIMHA B CUCTEME. DTH HEJOCTATKH MOJIEIBHOTO
BBIpQXEHUST MepMHHA ISl TUAJIEKTPUYECKON (YHKIIMU OMPEIEISIOT 00JIacTh MPUMEHUMOCTH
JAHHOTO TPUOIMKCHHUS.
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