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RHEOLOGICAL LAWS OF VISCOUS FLUID DYNAMICS

Annotation. Physically substantiated dependence of stress tensor components of velocity gradient arises from
the laws of friction, theoretical substantiation is associated with displacement tensor. Adequate simulation of viscous
fluid depends on conformity of the flow shear and normal strains to the value of the velocity components in each
point.
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1. Rheological communication arising from the laws of friction. In the course of physics and

theoretical mechanics friction law for small velocities adopted in the form of Fmp =—kve, =—kv , to

high velocities is generalized in the form of a quadratic dependence on the velocity modulus

= " , ou e
F,,= —k,v*é, [1]. Shear strains 7, = 4—— (Newton's law of friction ) follows from the law for small

—

velocities [, =—kv . Tt makes sense distribution of this fact to degree formula of friction

Fmp =—k, v"e,, m=1,23,. . and setting of quasi-parabolic properties of obtained in this case dynamics

equations of viscous fluid.
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Let the drag force of particle is proportional to the degree m = 1,2.3,... speed in a given
direction. Suppose that the friction force on the layer y; is [, = —k u" i , Trespectively,
F,= -k, ui on layer V. Next, consider the increment

SF :ﬁz—Fl :—kmu;”;+kmulm;:—km§14m;, SF N i, 6F = f5y, ]- linear force density

SF, fM ZT,., therefore, f =k'7 ., OF =k'7w oy . 7, T\Li,ﬁyx:—ﬁy)j, k'z, oy =—k,ou"i.).
: . ; m ou" k, . o
Resulting equalities — k'7 0y = —k, ou”, x . =u, 5 H, = - in the limit give shear stress
Y
. ou" ou” . . .
., =lim u, = {, , similar conclusions:
¥ -0 §y ay
T —,uavmﬂ' =u 8\)'”72_ —,uawmﬂ' —,uawmﬂ' _uau'”
xy maxﬂzy mazﬂyz mayﬂxz maxﬂzx mazﬂ

of which at degrees m = 1 obtain formulas of Newton's law of friction.

Similar arguments sets formula of viscous component 7z of the normal stress
%, =—pi + 72 . Let the friction forces equal at point x; F, = —k u"i and F, = —k ui

at point X, = X, + & . Increments are compiled: 8F = F, — F; = —k,ui + k,u"i =—k,cu"i. Through
a linear density of 6F = ¢ox,( = k" 7% we have 6F =k"7°.8x, k" 7°.8 = —k Su™ . By definition,

—

7o, ™ 7 . This expression is scalar multiplied by the unit vector 7 : (k" Z° ,i1)0x = -k, (Su™i 7).
The result is
(72,00 = 72| -7 | cos180° = -z, —k, (Su™i,i)=—k,ou™ |7 | |i|-cosO° =—k, cu"

o ou” k
Equalities — k"' 7. 6x = -k ou™, n, = u, 5 M, = k—"”', in the limit give formulas of the
X
normal stresses components:
7o =limu &lm—,u ou” Tl =1 o T =4 o QED
w0t " S "o Y ’”ay’” "o '
Obviously, full normal stresses are the sum of this components and hydrostatic pressure:
T,=—ptm, =-p+tpu,—.,x, =—p+tr, =-p+u, T, =—p+m, =—-p+u,
P p P pr7,, pTH & P pPTH Py

This justification of normal stresses makes unnecessary hypothesis of the pressure [2].
At degrees m = 1 formula obtained normal stresses imposed by Navier in 1822,
The elements of the matrix of displacement S are the 1st derivative of the Taylor’s series:

_ . ov/” . - ov"
VIFE S =V (F )+ — =8, =123, §={—}13]
’ ’ ox, 7 ox. T
J J
Obvious proportionality of derived the stress tensor components to the matrix of displacement components
ov”
r.=—po, +u ——. i, j=123m=13,579;...
g Y " ox
;
which is the theoretical foundation of the power law of friction.
2. On the ineffectiveness of the Newton’s law of friction in the modeling of turbulent flows. As

ou

shown in the preceding paragraph, the Newton's law of friction 7, = ,ua is a consequence of friction
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—

for small velocities F . — kv | therefore equation, p[%Jr (V,VW]+Vp = puAv + pﬁj based on the
{

Newton’s stress tensor r, =—pE + ,U§ , 1s a model of low-rate laminar flows, and can not be a model

_ Ou

Stokes” stress tensor 7w, =—[p+Q2/3u— u)divvE + ,uS , according to Landau, is a hypothesis, as

for high-rate flows. As is well known (see [3]), the Stokes” law of friction 7©

they have no physical basis, because there is no matching friction force Fmp = —kv , and strain rate tensor

S is part of the displacement tensor § = § + S for degree m = 1, which is another proof of the fallacy
of the Stokes’ hypothesis, therefore, the Navier-Stokes” equations.

3. Adequate approach to modeling viscous flows. It is quite obvious and does not require proof that
in the viscous fluid flows, especially in turbulent or intermittent , the speeds are changed in magnitude and
direction , therefore, frictional forces will be variable at the points of the stream

Fo=—kv"é v v|,v=vé, m>0,m=13579,.

mp >l o7
For example, the longitudinal velocity is many times larger than the transverse velocity component in

longitudinal streaming flow of the plate: |u| >> >> ||, thus in the direction of axis / must run one

of the friction

P =—kui,F, =—ka'i,F, =—ka'i,F, =—ku'i,F, =—ka'i

>* mp
etc., and in the transverse directions with the laws of other power-law
E, =—kvyj,F, =~k j,F, =k}, F. =-kwk,F, =-kwkF, =-kwk,.,

etc., which should be taken into account in the formulas tangential and normal stresses

nt

ov’
Z, =-po, + ,, ?,l,] =123,m, =1.3;5,7,9;...
J
(51_]_ Kronecker delta) and in the dynamics equations.
4. Universal model of the dynamics of liquid and gas. Thus, from the laws of friction with different

degrees refractive

- ms e

b, ==k, v"e vv|v=ve,m >0
follow the stresses with the corresponding degrees

m;

T, =—pS, +u i, j=123,m, =13;579;.

o it - Al L

and equations
ov, ap 8,0\)
—+>v L +—— o4+ Dy —(u, ——),i=123,
A Zjax) o = Z ~(u, ]) ~ Z
3 3 3 3 m aV
PCV(5+ZV]§ _Zg(ﬂ—) Ple++ZZﬂm 6x 6x

j=1 j =1 j j=1i=1

Degree must be odd positive integers to belong quasi-parabolic type equations. Of odd powers of the
property lost and the initial-boundary value problems for these equations are incorrect.
These complexes are formed in dimensionless variables:
1 . Uml—2 m Uml—l
= ILI L = 'Lt ILI L = LKS
Re pL pUL M Re

Umi71
Ksm — /umi — a(g)mi—l ‘Umi—l
H m,

i
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Euler equation of ideal gas and fluid obtained from wuniversal equations with degrees
m, = 0Vi,Ks, = 0. In ideal gas and fluid viscosity is zero (no molecular transport) confirms the validity
of the following formula:

i

1, 1o 1o 0
M, =o(—)"" g, pt, o =o(—)" = ()" =D =0,u, = 0.
m m 0 1

Equation with the stress tensor can be obtained from Newton's equations with exponents 77 = Vi

and 4 = M viscosity coefficient.

CeK | i

| R .
Equality o = 1( ) follows from the formula 4, =a(—)""'u  with
i m.

1 1
mo=1: p = a(I)Hu =au, m=1: y = a(I)Hu =, since f4 = [ .

5. Comparison with the experimental averaged velocity profile of turbulent flow in a circular
tube and areas of applicability of power rheological law. Axial velocity of the one-dimensional steady
flow of a viscous fluid in a circular tube is obtained from the equation in cylindrical coordinates

ar ‘u’”i( dV )V 0V, = OZ:p—const<O,

dz r dr
The solution has the form:
l d V.
Vzm: p( rz)’Vr:O’qu: _( __)m
4u U, dz max/V,

Figures 1-5 are paintings comparison with the averaged velocity of the turbulent flow (indicated by
asterisks), given in the textbook [2] p.670. Draws attention to Figure 1, where the velocity profiles are
plotted strength laminar flow in a pipe, the corresponding friction law of Newton and solving the Navier-
Stokes equations m =1, 4, = x . Averaged turbulent profile matches to Reynolds number Re = 3 240 000.
Figures 2 and 3 shows the comparison of the theoretical values for m = 7, m = 9 with the experimental
turbulent profile. There is an almost perfect match.
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Thus, the most coincident with the experimental results are obtained with the increase of the degrees
m =17, m=9. Obviously, it makes sense simulate certain turbulent flows by varying the dimensionless
parameters of these rheological laws.
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