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The boundary-value problem for the heat equation is reduced to a system of integral equations, which singularity
is conditioned by the extinction of the domain at the initial time. Analytical solution of this system is found using
Laplace transform in the form of a convergence series. Its analysis enables to establish asymptotic behavior of the

solution at small time depending on boundary conditions,

Introduction. Development of analytical
methods of solution of free boundary problems are
very important for analysis of dynamics of
phenomena of heat and mass transfer with phase
transformation, hydrodynamic flows and many other
problems. The well-known analytical method is based
on the representation of a solution in the form of heat
potential with following reduction of the given
problem to integral equation [1]. However if the
domain with moving boundary degenerates into a
point at the initial time, the integral equations become
singularity and can not be solved by Picard’s method.
Asymptotic properties of such equations have been
investigated in [2]. Auto-model case when the
boundary @(f) 1s moving according to the law

alt) = ¢+t is considered in [3] where analytical
solution is found. The case of a uniform moving

boundary appears in many applications, in particular
in the theory of welding.

Problem statement. Definition. The class

functions M ; is defined by formula: f(f) € M ;(h)

if f(¢) is continuous on the interval ((,f) and

. f() .
llﬂl}Lﬁ) = h = const , where f is any real number.
=0 f

The main problem can be formulated as following.
It is required to find the solution of the heat equation
du 8%

= 1
a | o ()

in the domain D(t > 0,0 < x < a(r)), degenerating at
the initial time: «(0)=0 and satisfying the initial
condition

u(0,0)=0 (2)

and the boundary conditions
u(0,0) = (1), (3)
u(a(t).r) =y (t). (4)

The functions @(t) and (t) supposed to be
continuous, and () is positive, strictly increasing,
differentiable function.

The solution of the problem (1) — (4) can be
represented in the form of heat potentials:

i 2

1 x x
ulx, )= ade ,;I'(.t—'r}m exp{— FET _ﬂ}v{r}d:r +

1 ex—a(r) (x—a(r)’
S J(?—r}m = [ aai(t-1)
that satisfies the equations (1) and (2) for any

functions v(r) and u(r). Satisfying the boundary
conditions (3) — (4) we get the system of integral

}#{F}d’? (3)

equations with respect to v(r) and (r) . Eliminating

() gives the integral equation [2]:

uo)- [K@ou@dr =0, 6

where
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a1 alt)+elr) (ax(t)+a(r))
m‘”'zaﬂ{ TRSE ﬂ"p[ da*(t—1) }

ORI {_{a{r}l—a(r)}z}}; @
(t—o)" da(t—1) _

1
f{r)—zﬂ&x
a(t)’

er‘ a( 1 7€ {
Q=1) 4a’(t-7)
The kernel K (t,7) has singularity at ¢ = 0, thus
the equation (6) is not solvable by Picard’s method.

}@J{f)df =y (1). (8)

Asymptotic properties of the solution w(r)are
given by the theorem 1 [2]:

Theorem 1. If a(f)e M, and f(t)eM;,
ut)e My
plt)e My, for0<y<1/2.

Let us prove now the lemma.

then

for y > 1/2 and

102

Lemma. If @( p) is the Laplace transform of the

oo

function a(t)ie. @(p)= [e " w(t)dt
1]

@(p*) =Q(p) = Q)
Q) e Mﬁmz!

or in short

notation @(p) — (1),
and if w(f)eM,,

Q)eM,.
Proof. According to the Efros theorem [4], if

f(p)—> f(t), then

then

G(p)flap)]— [f(@)ev)dr,

where g(f,7) « G(p)e ™"

Putting G(p) =1, q[p)=v'r; we find that
e P e " =g(t,7) and
2/t

fl(\f{;) — alt) =

ot % _2 a0
= |——e *Q(r)d7r = ze™” Q(2itz)dz
nj yNE T

2
=1

\Em(t) = —-V%kae_:!ﬂfzw"?z)dz.

Since €X(¢) 1s an original satisfying the inequality
Q(z) < Me™™, & >0 wecan conclude from (12)
that Q(r) € M,,,, . Differentiation of the last

expression shows that )'(f) € M, .The lemma is

proved.
Solution of characteristic equation. If the

boundary a(f) does not touch coordinate axis, i.e.
a(t) € M, and it can be represented in the form
a(t)=ct+at), (9

where ¢ =const and a,(t)e M, A>1,thenwe

can use the method of regularization for the equation
(6). According to this method we should solve first

the characteristic equation for a(f) = ¢f which can
be written in the form

ex 7 k(e +1) _
u(t )_IJ ) [ (t-7) "]#{T}df

j D uwydr = 1), (10)
where & = ;—a.

Using Laplace transform and calculating the first
integral in (10) we obtain

T t+T kit +7)
2 e d =
DIE ,J(:-r)” ﬁxp{ (t-71) }u(r) ‘
“ Toi+T kr+1)°
- VT exp| —pr 22 g
ﬁ[ﬁ(r]drfj‘u_ﬂmcxp]: pt 7 } t

=\f; ;4_1 J-e—{\ifn* +2ﬁ‘] ,rlesz#(r}dr‘
Jp+kt k)

Introducing notation

e ut)=a(t), € f(0)=f,(t)

we get using shifting theorem

(11)
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Hp)=a(p+k®), f(p)=fi(p+k).
Then the image of the first integral in (10) 15

Ie'”‘fi%exp{ (E ? },&:(T}a’r—
=£[Jﬁ+%}&[(dp+ka+2fc]3},

while for the image of the second integral we have
the expression:

" ek -t
Ie P I"Wﬂ(”d“ﬂ =

L] 0

=—V—E~—5{p+kz)_

Thus the Laplace transform of the equation (10) is

o (2P k(¢
D[e.- D[—[r—)—,u(r)drm
= J*’E o(p+k*).
-.\,lp-i-k

Replace +/p+k* in this functional equation by
Powe get

a(p’ 3"1%”]“"[“”2") ]-—W(,ﬂ )= 1P

&

Using notation
a(p*)=Qp). f,(p*)=F(p)
we get the functional equation for C)( )

PIQ(p) - Qp +2k)]- k[Q p) + Q(p +2k)]

and corresponding equation for originals

(12)

;i[ﬁff)—e'z*‘ﬂ{f}]—

k[ + e QD) = F'()+ F(0).  (13)
Conjugation of the given conditions (2), (3), (4)

at £ =0 enables us to conclude that @(0) =y (0)=0.
Then from the formula (8) we can suppose that

fityeM;, 6>0 and u(t)e M, ,, due to the
theorem 1. Therefore a(t) e M,_,,, and Q(0) =0,
F(0) =0 due to the lemma.

The equation (13) can be rewritten as the
differential equation
(1= (1) - kQ(1)] = F'(¢)
with the initial condition
Q(0) =
The main problem is to find its solution not in
term of F(t) but in term of f(¢).

To do it we expand the exponent into a series
and represent (14) in the form

(14)

Q) -kQ(t) = ie"“’”F'(r) .

=0

Applying again Laplace transform we get

Q(p)= z P zzkﬁ{p +2nk)
=01 -
thus

a(p) =0p) = Z‘E-*f NP L2 ([ 4 2nk) =

Z‘%—”ffnf + 20k,

To find the original we apply again the Efros
theorem putting in (11)

— 2nk .
G{p}="£—t—g—ﬁ 7(p)=(p +2nky’.

p-
Then
G(pyer o = Y222k ooy
“Jr-k
— E—-hl!.i:!:[] + (2” + ]}k ]E—-i"rltf\"; 'E_”JJ

Jp -k

From the tables of Laplace transform we can
find

w(dnkr, i)+ (2n+1)kx
x x(ﬂmkr,!)+ke'4“}r+£}rerjﬁ:[4nkr—k*ﬁ] .
2t
where
= ¥, ey =g
D O
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Using Shifting theorem we get

g(t,r)=e "W (dnkr,t -1y,  (15)
where
d e'3:+(2n+1)kx
24t
1 = ; T
W) =dx| - o 4 ket *-*=erf(_-k,j;) *
{J;Tz 2
if rt=<it
(. if Tt
(16)
Thus

a(r) = jieq,ﬁ»!zw(%h,f —7) f,(r)dr

o a=0

and from (11) we obtain the final formula for the
solution of the characteristic equation (10)

u(ty= [V(z.0f(o)dr, (17)
1]

where

V(r,t)= e‘*l’Ze'“"l"mlrW(élnkr,r ~-7).(18)
a=0

Expressions (16) — (18) show that the function

F(r,t) Has singularities at t =0, =0, r={. Thus

convergence of the series (18) should be proved. The
last expression can be written in the form

Vir,) = O + 1, +1,),
where the terms in the right side have following
estimations:

o i

f.:i 2nkt M

_\E(E—r)]"ﬂu Jr@-oy? o’
, 4kt
o= =
=T
o .I'{ _I1-J|1J5: T
I, = e T =
’ ; a(t—r1)
K ad ok g4l

Z 21r1+1]|ufi:2.<3JL ke (2ne1)’

u=0

2nk
xer;fc[fi—km'r—r]fzk‘e* r"”+
I_

Using these inequalities we can estimate V(r,):

—#2{1 -}
F(r,f) <
TN
k —k (1=1) —k (t-7) ﬁ
) + 2k +—. (19)

WL :
N Ay o
Since |f(:)| < ht” we can estimate (1) using
(17)-(19)

lu(o)| < jV(r, o)|f(r)|dr < h TV{:,r) tidr <
o o

! Tﬁ—l _I_ﬂ' TJF*L"Z i )
<hN, + + +7° +7%" |dr =
/TN N

= hN].tﬁ"""iz ®
1 a-l
LA S N LIRS P
) "u' =X
<h-N, -t (20)

where the constant N; can decrease only if &

increases.
The last inequality means that

w) = [V@nf@)dreM,.,,,.

Taking into account that «(f) € M, we can see
the confirmation of the theorem 1.

It is important for applications to have a simple
approximate expression for calculation of w(r) for

small values of t. To get such approximation we
consider again the equation (14) and use the

expansion 1 =& =2kt + g(¢) for small values of

t, where g(t)€ M, . Then the equation (14) can be
written 1in the form

FU)

Q'(1)—kQ(1)= +R(1), (21)
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where

RO =[N -kQD]-S(),  S(t)eM,.(22)
Using Laplace transform we get

- = 1 % = _
Q(p)- =— ¢
POxp)~kQp) = ;[EIF{Q)JG+R(F)

thus

[aF(q)dg +——R(p)
p-k

R(/p)=

t"v{p}=2k'\*}; ” F[qF(q}de—

1 1 = 1 =
_EE. @_k J_{;(:.}cfa +—.JE—.&:RNG),

M
where
R = £y =€ f1).
Using formula [4]

1 ek’f

k3

we can write

terfe(=k Jt )
w(t) =

(23)

ierfe(—k~t—1)- f( }d + R, (1),

1 t ﬁctrf]

" ak IJ_

where

» fEk =
R =

(1) = jr

R,(1) < R([p).

R(1).

ferfe(—k~Nt—1)- R (r)dr ,(24)

(25)

Let us estimate Since

fi)= f{t}e*zr e M, and a(t)=ct € M|, wecan

derive from the theorem 1 that @(t) € M,;_,,.From
the lemma and formula (22) we obtain that
R(t)e M,,,,. Finally, using lemma again to the
expression (25) we find that R (t) € M; and from
(24} we conclude that

RMWeM,..- (26)
We can see that in spite of the fact that the term

R, (¢) in the formula (23) contains the function @(f),

it is an infinitesimal of more higher order in
comparison with the first term for small values

of ¢, s0 it can be neglected. Since () = e (),

S5y = g [ (¢}, we get the final expression for the
solution at small values of :

H()—; ierfe(—k~t—1)
4k -t

Regularization. Let us consider now the general
mtegral equation (6) where the moving boundary is
given by the expression (9). It can be represented in
the form

- f(r)dr. (27)

w0~ [K (L 0u(e)dr =G, @8)

where
G() = [[K(t,1) = K, (t,0)] u()d + £ ()
0

and K, (#,7) isthe kernel of characteristic equation,

i.e. itis the kemel K(t,7)at a(t)=ct.
Using formula (17) for the solution of (28) we
get

() = ]V[r,.r}(?{r)dr

or

u(r)- rJ‘V(T,i')].[K(Ta ) - K, (r,7)]u(z)drdr =
L 1}

= [V(r.0f (x)dz. (29)
i
If al(f)iPr“i? A =0, then forany s(t)e M,

p=-1 ie |.5(I}| < gt” it can be shown that

]-V[r,z} ][K(r],r] - K1{T“T)15(r} Ao

< Lﬂg!"mi_”?,
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where L is a constant that should decrease when
[ increases. It enables us to prove that for any

S(t)e M theintegral equation (28) can be solved
by Picard’s method for the interval

P <1, < LA
<1, <L; :

d=1/2

(30)

To expand this solution for £ > ¢, we write the
equation (6) in the form

w0~ [K(t,0)u(r)dr =

1]

= f(1)+ ]f{[r, Tu(r)dr. (31)

Taking into account that (f) > £ >0 for 1 = ¢,
we can conclude that the kernel K(7,7)in the left

side is continuous, Since the function w(t) for f <¢,

is already found above, and the right side of (31) is
defined,
We can solve the equation (31), 1.e. (6) for any ¢.
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Pezome

AENLIETKIITITIETIH TeHAeY YIUiH WeTk eceli cHry-
NAPALIFE VAKWTTHH GACTANKB CATI CANACHIHBIH TVYhiHA
CORKECTENreH HHTErPANALIE TCHASYIED HYHACCIHE anbin
kenedi. Ocbl yAeHiH aHAMHTHKANBIE WeLiMiH Katapnap-
ABIH yinecisnimn rypisaeri Jlannac rypaeHynepis naina-
JAHY APKLUIL Ta0yFa Gonaasl. By el vakkTThE MaHb--
3bl WAMANL WEKTEYNIK HKArnafslHa TAOYeNIl ACHMTOTHKL-
JblE DaFRITTE Wewynl Tadyrl MyMKIHIIK Depei.

Petwome

[{pﬂL’EﬂH Janaqa nng YpaepHeHH! TENNonporOIHOCTH CRE-
JEHA K CHCTEME HHTETPANbHLIX _'g.'pﬂlill-icl-tlvtﬁ, CHHIYJIHPHOCTh
KOTOPBIX O0VCAORIEHA BRIpO#IEHHEM ODIACTH B HAMAILHEI
MOMEHT BPCMEHH, AHAHTHHCCKDE PEIIEHHE ITOR CHCTEM B Ha-
XOOHTCH C HCNOILIORAHHCM IEWGGPEBUB—HHHH Mannaca B suie
CXOMHIIHNCA PHODE. ITo IO3BOAACT VCTAHOBHTE ACHMITTOTH-
HECKDE MOBSACHHE PEIUCHHA NPH MABIX FHATCHHA BpEMEHH B
FABHCHMOCTH OT I'PAHHMHBIX YCTOBRHHA.




