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V. 1. KOROBOV!, S. A. ZHAUGASHEVA?

VARIATIONAL APPROACH TO THE COULOMB
THREE-BODY BOUND STATE PROBLEM

It is known that the variational methods are the most powerful tool for sedying the Coulomb three-body bound
state problem. In this work the exponentinl explicitely correlated variations) hasis set of the type expl—a,r, - f.r, = 7.1 )
with complex exponents is considered. It will be shown that the method yields the best bound state energies for many

known atomic and molecular systems,

1. Introduction. Variational methods for nume-
rical calculation of the Coulomb bound state problem
were developed by many authors [1]-[6) since the
very beginning of the Quantum Mechanics. The first
simple explicitly correlated basis set were introduced
in 1928 by Hylleraas [1, 2]:
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where r, and r, are the pnaltmn VeClors of two
elec rrmﬁ with I'C'Sptlﬂ o a nueclens.

Later it became clear that at least for the atomic
helium ground state it is essential to incorporate into
the expansion logarithmie terms of the type plnp,

p W |
where p= |:!J"|"1 + r:, A].J . This kind of the wave
function behaviour at small p was predicted
analytically by Bartlett and Fock [7]. In 1966,
Frankowski and Pekeris introduced the compact
representation [3] of the form

':"‘"{flsr:}=
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Inclusion of the logarithmic term into the
variational wave function brought substantial
improvement of nonrelativistic energies for the two
electron atoms.

With advance of compuler power, basis sels
became simplifed that allowed for caleulating nume-
rous mamx clements required for relativistic and
QED corrections, Further efforts were concentrated
on ¢ choice of strategy to penerate the most efficient
and flexible basis sets within the same form of basis
functions. In [4] the double basis set with peneralyzed
Hylleraas trial function
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were used. This double basis set technigue along with
full optimization of nonlincar parameters at each
basis set yield substantial progress in accuracy. Howe-
ver, further advance is hindered by the numerical in-
stability even in quadruple precision arthmetic due to
almost linear dependence of the basis sef at large N,

The method of our work 15 further contimuation
of these latter ideas.

2. Variational expansion. Expansion we want
to explore here is very similar to the generalized Hyl-
leraas basis set, but instead of using the polynomials
over Hylleraas variables we generate nonlinear
parameters in the exponents in a quasi-random man-
ner. Thiz method has been successfully used in
calculations [3, 6] previously. Obviously, the matrix
elements can be evaluated in the same way as for
the generalized Hyllerans basis set (3). In our ap-
proach we are using complex exponents, It is easily seen
that if one replaces real exponents by complex ones
the analytical integrals will remain exactly the same.

The variational wave function is expanded in a form

N3
p = Z{YJI Rc[e.‘“n'l"l'ﬁ": =Fifkz ]'ﬁ'
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Ht:'rt thy E} and v, are complex parameiers generaied
in a quasi-random way {8, 9]:

a, = [Ef{s +1)\p. j.{x;l,l - A
H
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erjﬂt'aignulcs the fractional part of x, p, and
{ , are some prime numbers, [.-EI', " *"T:r] and [ﬁi;, A, ]
are real variational intervals which need to be
optimized. Parameters #; and ¥, are obtained in a

sitmilar way. Funetions in Ey. {4) are the solid bipolar
harmaonics

Y2 (rn)=riri Y, ®F, |

An important feature of the method is that it
demonsirates a very tast convergence. The penaral
rule which can be inferred experimentally from the
use of the method is that increasing of the basis by
ahout 200 functions vields about one additional digit
in the variational energy for large basis scts of
N-2000. The minor deficiency is that the basis
quickly degenerates when N increases. Alreadv for
moderate M-250-400 a quadruple precision is
required.

Uszsing this method we want to sobve the bound
state problem for a svstem of three particles
interacting via Coulomb forces, The nonrelativistic
Hamiltonian for such a system may be written:
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where 4 and ., are the reduced masses of particles
1 and 2 with respect to a third particle, Z . 7, and 7,
are arbitrary cherges of three particles,

3. Evaluation of the Hamiltonian. It i=
convenient to write down explicitly the action of the
gradient operators on the trial functions:

v [ i P lrna ) =
Ll CE

Then by using the conventional anpular momen-
tum algebra [10] one may find how the operators
appearing in the Hamiltonian (6} acts on the regular
bipolar harmonies:
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The next set of operators, which are required, are
v i =¥,
(v, - i = A{.r, R v
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With the use of the above expressions one may
find formulas for the kinetic energy operator, For

brevity of notation we use &, =1/, a{ﬁ.-' ﬁ‘r,-:l, then
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For the functions depending on internal degrees
of freedom, the Hylleraas coordinates {F!,f':.f'.;']';

the ¥ operators may be expressed by
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Thus the kinetic energy operator can be
expressed as
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where £, = 1!“"‘;:--‘*;; =k; + ':’_,."

4. Results. In our calculations for the helium
ground state five hasis sets with independently
oplimized variational parameters have been used.
The construction of the total variational wave
function resembles a pine tree, The first layer has
heen tuned to approximate the general hehaviour of
the solution at intermediate and large » and v . The
second layer is taken to be flexibie in a smaller region
of » and L third set 15 for vet much smaller region,
ete, A detailed optimization has been performed for
the 5 sets with total & = 3404, Quadruple precision
15 not sufficient at these and larger & and we have

used the sextuple precision. Further calculations with

{105}

I'—

46005200 have heen performead with 64 sig-
niftcant decimal digits {octuple precision) and only
partial optimization of variational parameters of the

last layer, which approximates a very tiny region

= around nucleus, Some optimization of a distribulion

of n_between the layers N = (v +n_+n +n +n ) has
been made as well.

As can be seen from Table 2 presented result
extends the accuracy of the nonrelativistic ground
state enerpy for the helium atom substantially.

Second case 15 the hydrogen molecular jon
ground state that represent another limit of mass
configuration of constituents with one light and two
heavy particles. For this case it is especially essential
that complex exponents are introduced, because it
is the most natural way to reproduce the oscillatory
behaviour of the wave function of the vibrational
states_ In this case (see Table 3) octuple precision
arithmmetics hag been used to provide the numerical
stability of the calculations. Table 4 demonstrates
progress in numerical study of the nonrelativistic
energy for this state. In Table 5 the other examples
are summarized. A negative positronium ion demon-
strates a limit of three particles of equal masses. The
second and third cases are applications of the method
to the states with nonzero angular momentum. The
last example in this Table is of special interest. This
is the last vibrational statc in 8 series of S-states of
the hydrogen molecular ion, and that is the rst
variational confirmation of the existence of this state
{the binding energy corresponding to the cited value
is 0,7442251630{d) cm'. That is probably one of
the most spectacular demonstrations of the power
of the exponential variational method with complex
exponenls.

Table 1. Monrelativistic energies for the ground state
of a hellum atom “He, A i= the number of basis Tanctioms.
The last digite of the diferenee in cnergy
between fwo successive calenlations is shown
im & third colamn

N E_(inau) AE
MO0 | 29037243 TT034 11959831 1093 ]

DARNG | -2 003TRAITIONE] 1959RY 1 11421 4411
4200 | -2.0037243TT03411955E3111540 119
4600 | -29037243770341195982111572 12
5200 | -2.903T243770341195983111587 15

| extrap | -ZO03T243TTOI41105083111594(4)
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Table 2. Comparison of the ground state caergy
of the helium atom ebiaimed in this work
with odther thesretical caleulations

hl Efau)
Frankewski
and Pekeris [3] | 246 |-2.9037243770326
Drake
| and Yan [4] 262 [ -2903T2427T054] 1948
Dirnke [4] 2104 | 2 HETRITTORL1 195905
Horobow [1] 5200 ) FHETZ4ITIE4 1195983111594

Tahle 3, Varlational enerpy (in 3.1
of the positive hydrogen ion ground state a5 a fonction

of %, the aumber of basls fonctions

N

E;ﬁnuﬂ}wﬂh

300
A]
Sl
i}
IO

-0 AHTIA0063 1 234050T47005465
1597130063 1 2340507483 25657
(L5971 I00G 3 1 23405074 5340526
05071 3G 1 234050748341 212
-0 587G L I3A050748341327

xtrap

-0 50T L 3MG 31 234050748341 25(1)

Tabile 4. Comparison of the ground state energy
of the positive hydrogen molecular jon obtained
in this work with ether theoretical caleulations.

m, =1836,152701m,.

L[]

N L {nu)
Gremand,
Chzlande and
Billy [12] 31740 | 0597 1 3WH3 123
Eebane and
Filinskow [13)] -DERT 13006312340
Moss [14] -0L.597139063 1 234
This wark | TOE | =0,597 | 39063 1 234060745341 327

Table 5. Other examples of three—body caleulations.
(L is the fotal anpular moneatin,
1 is the vibrational guasinm nemisery

Sysiem E

£ This work [15] | -0. 26200507023 29801077(3)
-0, 2620050 70233075

He (2°F) | This work [16] | -2 133164 HHT7928310(2)
<2 L 33164 1 WTT9RT

He'f This work [17] | -2.08402005449725(F)

(L=35 -2 BRAG2O04

w o= 'ij'.l

H (L=, | This work [ 18] | <r4907 51245581 2]
LA TR EA0AT

¥ o= Ay |
|

5. Conclusions. One may say that this high
accuracy is redundant and has no physical meaning,
But obviously, it shows the power of modern
computers and their ability to solve the quantum
three—body problem to any required aceuracy. On
the other hand, uncertainty in the variational wave
function approximately equals the square root of the
uncertainty in the variational energy and thus is about
10710 This accuracy does not look redundant.
These results prove that the nonrelativistic bound
state three—body problem is now satisfactorily solved
and the main efforts should be addressed to rela-
tivistic and QED effects.

The other advantage of the method is the
simplicity of the basis functions that allows for
evaluate analvtically relativistic matrix elements of
the Breit Hamiltonian (see, for example, Ref. [197).
It is possible as well to evaluate analytically the
vacuum polarization term (Uehling potential) [20]
and to build up an effective numerical scheme for
the onc—loop self-energy corrections [21]. These
features make the considered variational method 4o
be highly powerful universal tool for studying the
three—body problem.

A Integrals. Integration over angular variables
may be carried out as follows

15 -7,) = JYAE (s (ran M2, (1)

Using the expansion from the Appendix B one
ean get after integration over Euler angles that
the only nonzero contribution comes from bipolar
harmonies of this expansion with total angular
mmentom zero,

1)1 = O b cong)

Where cosd,, [_r,l o P jli'l[?r,.r'j It impies

that L'=L" and M'=—M". For the variational
expansion (4) the angular integral is

1) = iy T =
= (10 41— L4 M [rf, VAR do

i

The coefficient in front of ¥, in (hal case is

cxpressed as {see, say, [10])
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After averaging over rotational angles the matrix
element calculations will be reduced to some linear
combinations of integrals of the type

; {12)
I 1
Y '3

f
'||||
A

0 00

w A o T UL . ;
Uyl Boy)= | wrie ™ T dndredr; (13)

over infernal degrees of freedom, where {f, m,n} 15
a st of intepers, in peneral, nonnepgative inferers but
for some particular (singular) cases one of indices
or even two of them can be negative. In particular,
all the terms in the Breit Hamiltonian are of singular

type, while operators of the nonrelativistic Hanul-

tonian are of regular tvpe.
Integrating by parts it can be easily estabhished that
a ; L
[— E]E-m(a-ﬁrrk Tl 8.7} (14)

and thus, all I',_(c,P,y) for nonnegative (f, m, n)
can be generated from

Lol £.7)= (o + ,ﬁ]:ﬂ ryly+a)

A general recurrence scheme has been introduced
in [22], which we reproduce here for the convenience
of reading in its original form,

(13}

1
rh'wl ;a+ﬁ['|!1_|f-im+!rlll_.ﬂ L.1+ BI’H"]
B =[£][£][_ _5'_]" e e
AL Ber )| DS gy | (a+y B+7)
- '&'_T_';[ P o T *‘i:..u]-
[ 2
(B+7)

_2Am+n)

{ﬁ '}na-rl-i-l

This recursion is numerically stable since all the
guantities which appear in the recurrence [ormulas
are nonnegative.

B. Bipolar karmonics. For a product of two
bipolar harmonics one has

[J‘;.I (n)@r. (n }} [J";.I,{r, Ry {rl}]w ={17)

Maﬁ][ %) 7

{16)

_ZCLHI.'H Z :'t{,-l e {r.{'i:'@ L, {ra}}m1
where
[zsl' + 11 3f. g, 11 o 1]
B"r'z"-' e e - —
BRET T LF {4 x)
/(207 + IX2L +102L" +1)
r r '|
R | (18)
ik o I T B
(TN T
L' L* £|
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Pesome

Kynounplk yimaeHeni OaiilaHbICKAH KYHIi 3epTTeyTe
apHaJFaH eH KYIITi 81IiC peTiHIe BapHallAsUILIK, 9AiCTi KOJIIa-
HambI3. by XyMBICTa BapHalMSUILIK Oa3MCTi KOMILIEKTi
KOpCEeTKIMTepMeH SKCTIOHEHCHUATAB KOPPEISITHsIIaIb.
Ochl XYMBICTa KOpCeTKeH e, OYII oic KenTereH Oelrimi
ATOMJIBIK, XOHe MOJIEKYIANBIK Xyienepre apHaifaH Oail-
JIAHBICTHI KYHIeri SHepTUsIap bl Oepei.

Pesrome

I/ISBGCTHO, UTO BapHalMOHHBIE MCTO/IBI ABJISIIOTCS Haubo-
JI€€ MOIITHBIM HHCTPYMEHTOM IS U3y UCHUA KYJTOHOBCKOI'O TPEX-
TeJIHLHOTO CBSI3aHHOTO COCTOSHUS. B JTaHHOW pa60Te OKCITOHCH-
IMUaJIbHO ABHO KOPPEIUPOBATIA BapI/IaL[I/IOHHBH\/'I 0asuc Tura ¢
KOMIUTEKCHBIMU IToKazarensaMu. Kak Oblto II0OKa3aHo, 4TO 3TOT
METOJ 1Aa€T SHEPIvU CBA3aHHBIX COCTOSIHUA JUISI MHOTHUX U3BE-
CTHBIX aTOMHBIX Y MOJICKYJIAPHBIX CUCTEM.
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