UDC 510.67

K. KURALBAYEV, G. ORAZ, V. VERBOVSKIY Suleyman Demirel University

ON COMMUTATIVITY OF PO-MAXIMAL LATTICE ORDERED GROUPS

Annottation

A partially ordered structure $(M, \leq, ...)$ is called *po-maximal* if for any definable subset A and any maximal chain B in M there exist both the maximal and the minimal convex components of the intersection of A and B. In the paper we prove that any po-maximal lattice ordered group is abelian.

Since in 1986 Anand Pillay and Charles Cteinhorn [1–3] introduced and developed notion of o-minimality, investigations of non-stable, namely, of ordered structures became much more numerous and fruitful. Later on Dugald Macpherson, David Marker and Charles Cteinhorn developed weak o-minimality which is a generalization of o-minimality. Further generalization was pseudofinite o-minimality, introduced in [5]. KanatKudaibegrenov considered generalization of o-minimality to partial orderings in [6]. Here we suggest one more generalization of o-minimality on partially ordered structures.

Recall that a subset A of a partially ordered structure is called an *antichain*if for all a_1 , $a_2 \square A$ it holds that $(a_1 \square a_2 \square a_1 \square a_2)$. A subset A is *convex* if for all a, $b \square A$ it holds that $\square x$ ($a < x < b \rightarrow x \square A$). It is quite easy to see that any antichain is convex, just because if the hypothesis of an implication is false, then this implication is true.

Also recall that a *chain* is a totally ordered subset of a poset and that a *convex component* of a subset B of a tottaly ordered set A is a maximal convex subset of B.

DefinitionA partially ordered structure $(M, \leq, ...)$ is called *po-maximal* if for any formula, any $\overline{a} \in M$ and any maximal chain A of M there exist both maximal and minimal convex component of $\varphi(M, a) \cap A$.

Theorem 1Any definable subgroup of a po-minimal directed group G is convex.

Proof. Let $H \le G$ be definable. Assume the contrary, that H is not convex. Then there exist h_1 , $h_2 \square H$, $g \square G$ such that $h_1 \le g \le h_2$ and $g \square H$.

Note that $\{e < h_1^{-1}g < h_1^{-1}h_2\}$ and that $h_1^{-1}h_2 > e$.

Let A_1 be a chain which contains $h_1 < g_2 < h_2$ and satisfies the condition that if an element a belongs to A_1 then both $ah_1^{-1}g$ and $ah_1^{-1}h_2$ belong to A_1 . Let A be a maximal chain which contains A_1 .

Note that

$$h_1 < g < h_1(h_1^{-1}h_2) < g(h_1^{-1}h_2) < h_1(h_1^{-1}h_2)^2 < g(h_1^{-1}h_2)^2 < \dots$$

Let B be a maximal convex component of $A \cap H$. Let $b \square B$, then $b < (h_1^{-1}g)b < b(h_1^{-1}h_2) < ...$

Since
$$h_1^{-1}h_2b$$
, $h_1^{-1}gb$, if $a\Box A$ then $a(h_1^{-1}h_2)\in A$

By construction of the set A it holds that $bh_1^{-1}h_2 \in A$. Since B is a maximal convex component of $A \cap H$, so $bh_1^{-1}h_2 \in B$. Then $bh_1^{-1}g \in B$ so $bh_1^{-1}g \in H$.

Recall that $bh_1 \in H \Rightarrow b^{-1}h_1 \in H \Rightarrow b^{-1}bh_1^{-1}g = h_1^{-1}g \in H$. Then $h_1h_1^{-1}g = g \in H$ for a contradiction.

Recall notion of the centralizator: $C(a)=\{g\Box G: ga=ag\}$, it is definable by the following formula $\varphi(x)=xa=ax$, $\varphi(G)=C(a)$.

Since C(a) is a definable subgroup, it is convex. If 1 < b < a, then ab = ba, because 1, $a \square C(a)$ and $a^n \in C(a)$, hecause $a^n \cdot a = a^{n+1} = aa^n$

In the book [7] by Blyths the following two theorems were proved.

Theorem 9.14*If* G *is a lattice-ordered group then, for all* x, $y \square G$,

- (3) $x = x_{+}x_{-} = x_{-}x_{+}$;
- (4) $x \le y$ if and only if $x_+ \le y_+$ and $x_- \le y_-$.

Let $b \le a$, then $1 \le b_{\perp} \le a_{\perp}$ and $b_{\perp} \le a_{\perp} \le 1$

Theorem 9.16 For a lattice-ordered group G the following statements are equivalent:

- (1) *G* is commutative;
- (2) P_G is commutative;

Theorem 2 Let G be a po-maximal lattice-ordered group. Then G is abelian.

Proof. Let
$$a, b \square G$$
. Denote $b^+ = b \vee 1$ $a^- = a \wedge 1$

$$b^- = b \wedge 1$$

$$a^+ = a \vee 1$$

Let $P_G = \{g_+: g \square G\}$ where $g_+ = g \vee 1$. By Theorem 9.16 from [7] it is sufficient to prove that any two elements from the positive cone P_G commute.

So let $1 \le a$, $1 \le b$. Then $1 \le a \le ab$.

Since 1, $ab \square C(ab)$ and C(ab) is convex, so $a\square C(ab)$, that is a(ab)=(ab)a. By multiplying by a^{-1} from the left we obtain $a^{-1}a(ab)=a^{-1}(ab)a$, $ab=(a^{-1}a)ba=ba$. Thus ab=ba.

From now on we shall use the additive notation of the group operation.

Theorem 3Let G be a po-maximal lattice-ordered group. Then G is divisible, that is for any positive integer n and for any element g of G the equation nx = g has a solution in G.

Proof. Assume the contrary, that an element g is not n-divisible for some positive integer n. By theorem 9.14 of [7] it is sufficient to prove that any positive element is n-divisible. So we assume that the element g is positive.

Then in the chain

$$g < ng < (n+1)g < 2ng < (2n+1)g < ...$$

elements with an odd place are not divisible by n, and the elements with an even place are divisible. So let a maximal chain A contains that sequence and is closed under adding g. Let B be the maximal convex component of the set of n-divisible elements from A. Let b be from the set B. Then b+g is not n-divisible and b+ng is n-divisible. Note that b < b+g < b+ng. But since B is the maximal convex component, the element b+ng belongs to B, then by convexity b+g belongs to B for a contradiction.

Theorem 4Let G be a po-maximal lattice-ordered group. Then G is dense.

Proof. Assume the contrary that there is a minimal positive element a. But we know that the element a is 2-divisible, so there is an element b such that 2b = a. It is well-known that then b < a and 0 < b, for a contradiction.

Theorem 5.Let *R* be a po-maximal lattice-ordered associative division ring. Then *K* is a field.

Proof. By Theorem 2 the multiplicative group of R is abelian, then it is a field.

REFERENCES

¹ Pillay A., Steinhorn Ch. Definable sets in ordered structures.1 // Trans. Amer. Math. Soc. — 1986. — Vol. 295. — P. 565–592.

² Knight J., Pillay A., SteinhornCh.Definable sets in ordered structures II // Trans. Amer. Math. Soc. — 1986. — Vol. 295. — P. 593–605.

3 Pillay A., Steinhorn Ch. Definable sets in ordered structures III // Trans. Amer. Math. Soc. — 1988. — Vol. 300. — P. 469–

476.
4 Macpherson D., Marker D., SteinhornCh.Weakly o-minimal structures and real closed fields // Transactions of The

American Mathematical Society. — 2000. — Vol. 352. — Р. 5435–5483. 5 Вербовский В. В. О коммутативности псевдоконечно о-минимальных упорядоченных групп // Известия НАН РК, серия физ.-мат. — 2010. —1 (269). — С. 38–40

6 Kudaibergenov K. Zh. Generalization of o-minimality to partial orderings // Mathematical trudy. — 2012. — N 15(1). — P. 86–108.
 7 T.S.Blyth, Lattices and Ordered Algebraic Structures // British Library Cataloguing in Publication Data—2012.

Поступила 18.06.2013 г.