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The growth of the perturbation density in a baryon substance due to a nonstationary and nonlinear characteres of
the equation of state of nonbaryon matter in the Universe is searched. This state could equate at the Big Bang process,

after which the amplitude was radically decreased.

The problems of development of fluctuations of
baryon matter are studied in a number of papers (see,
e.g., [1]), however, the physical reason for the growth
is poorly understood. The fact is that the conventional
approach to the problem is based on investigation
into gravitational instability of baryon matter in the
Universe. However, the observational data of the last
decade proved a significant quantitative
predominance of nonbaryon substance over baryon
matter in the Universe [2].

Therefore, a natural question arises if nonbaryon
substance itself (for example, dark matter) can cause
formation of space structures in the Universe. Various
aspects of the problem were discussed in [3-4].
Among them, note analysis of antigravitational — in
particular, vacuum — instability of cosmological baryon
substance. Moreover, it was shown in [5] that vacuum
itself can produce objects like dwarf galaxies.

The goal of this work is to study the development
of perturbations of baryon matter due to nonbaryon
substance, in particular, to analyze the growth in the
baryon-matter perturbations during evolution of the
Universe with the nonlinear and nonstationary one
type equation of state. The necessity of searching
the cosmological consequences of a nonstationary
equations of state for nonbaryonic substrate was
argued, in particular, in review [6].

1. Evolution of the scaling factor

The Einstein equations describing evolution of
the scaling factor are written as [1]
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a= —T”G(pn,, +3p,,)a, (1)
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The law of conservation of energy follows from
Egs. (1) - (2)

pu@ +3(pyp + Py)ata =0. 3)
In this system, p , is the density of nonbaryon
matter, p,, is the pressure, and G is the gravitation

constant. Here H = £ is the Hubble constant which,
a

as was noted above, depends on time. In addition, in
Eq. (2), k is the space curvature equal to 1 for the
closed, 0 for the flat, and —1 for the open models of
the Universe, respectively. In order to find how the
Universe evolves in time, one should specify the
equation of state of nonbaryon matter, which relates
the energy density and pressure. For adiabatic
processes, the equation is written as p , = @ p,,,
where o is the parameter of state (a constant
parameter in the Friedman model). For the known
forms of nonbaryon matter, for example, for
quintessence, vacuum, phantom energy, it takes
on the values —1<a<1/3, -1, and w<—1, respectively
[2].

According to the statement of the problem, we
use the Wetterich parametrization [3,7].
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which describes a wide class of nonstationary

equations of state. Here o =—1,and b= 0.25, a is a

fixed scaling factor, and a is its current value.
Solving Egs. (3), (4), we derive

)

where x =2 . Substituting the necessary parameters
a

P = Pox (=4+x)"?,
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into Eq. (2), we have the following inhomogeneous

differential equation of the first order:
dx

dt

with the constant C = ,/%75 Gp, .

To solve the above equation, we consider the

Cx™"* (=4 +1Inx)"°, (6)

case where -2 ((1. This condition is fulfilled both in

a,
the very early Universe and at later stages of its
evolution under the corresponding choice of the fixed
scaling factor a.
Equation (6) is then simplified and is written as:

dx

== C-107.x7"2, (7
Solving Eqs. (7), we derive
t=C"10°x"- (8)
Transforming Eq. (8), we have
x=C¥ .10, &)

Differentiating Eq. (9) and using the definition
of the Hubble constant, we can easily find its
expression as

H=>=r" (10)

Using an explicit form of the variable x, we
derive the following dependence of the scaling factor
on time:

a=C"-107%az*"”. (11

2. Growth of perturbation density in the
universe

Let us write a general nonrelativistic equation

describing the development of perturbation density
of baryon matter [1, 4] as

8+2HS +(vk* —4nGp, )5 =0, (12)
where v is the velocity of sound in baryon matter, k
is the wave vector, and p, is the density of baryon
matter. For its further analysis, two notes should be
made.

Two terms are present in the parentheses in Eq.
(12). The first term describes the internal energy of
baryon matter, and the second — its external
(gravitational) energy. In this case, the relation
between these energies changes in the course of
evolution of the Universe.

Further, strictly speaking, it is not only the
equation of state of nonbaryon matter that changes.

So does that of baryon matter in the course of
evolution of the Universe. Hence, the relation for
baryon-matter density is also not constant but depends
ontime.

In the very early Universe, matter is of
relativistic nature, therefore, v ~1; at later stages,
matter becomes nonrelativistic, hence v. — 0. In
addition, we take into account the fact that the wave

k2 (XZ(Z_Z = — : 2—4/3
C" -a,
according to Eq. (11) and condition a, = f,.
The law of conservation (3) with allowance for
the presence of not only nonbaryon but also baryon

matter is generalized as

vector is decreased as

(D + Py)a= "3[(/),.1; + ph)+ (pnb + D )]a . (13)
However, since baryon matter and nonbaryon
substance do not interact with each other, the
variables entering the equation are independent. Thus,
for baryon matter, we derive the following
evolutionary equation:

(14

where K is the coefficient depending on the
equation of state of baryon matter (for relativistic
gas K =4, for dust K = 3 ). The solution to the
equation derived with allowance for Eq. (10) is written

pb="K'Hpb9

as p, =P, t*, where p, = const.

Substituting these values into Eq. (12), we have
a differential equation of the second order with the
variable coefficients

S+P(NS+0(1)5=0, (15)
which are
10 / a o .
P@)=2", Q@)= Wﬂ *-47Gpt™" | respectively.

Let us study the evolution of baryon matter within
the time interval ¢, =107 < <¢, =107°s. Justification
of such statement is due to the fact that one of the
most important problems in modern cosmology is
investigation into the formation of baryon-matter
perturbations at the earliest stages of the Universe
[8]. Therefore, let us consider the behavior of the
function £, ~107°¢ characteristic of the very early
Universe, assuming K = 4 and using the comparison
theorem for finding the maximum allowed value of z.

The choice of the lower limit is due to the fact
that the stage of production of baryon matter starts

at the instant of time 7 =107°s. The upper limit
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Figure 1.

t, =t,~10"s is specified based on the estimation of
termination of the hadrons era [1].

4

4
2.1 Let the condition t3>>4xGpt

a3, 2
C*" -1,

meaning predominance of the kinetic energy of
baryon matter over the potential energy be valid. In

this case, neglecting the second term in the Q(¢) of

Eq. (15) we find the solve that
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2.2 Let the inverse condition
10t -2 “
eWE: t 3 <<4rxGp,t™ | which occurs in the case of
0

predominance of the potential energy over the kinetic
one in baryon matter, be satisfied. The solve follows

that
5(t)=C,simh ¥7%Pe ¢ ¢ V4”G"°. 17

2.3 Finally, let us con51der the case where the
¢ 4
relationship %{’ ' m
c*" 1,

4nGp,t™ is valid. From a

physical view point, the relationship describes a stable
state of perturbation in baryon matter. Thus, solving
Eq. (15) becomes

(18)

In so doing, the density changes according to
the law 5(f)=C, +C,t"', meaning a intense decreasing
as compared to the power (8(f) ~ ¢) growth rate of
baryonmatter perturbations within the conventional
Friedmann cosmology with the stationary equation

S(t)=C +Cyr".

of state for nonbaryon matter [1].

Conclusion

Analyzing these graphs we see that at the matter
borning epoch the baryonic matter has the
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superperturbed state. This state could equate at the
Big Bang process, after which the amplitude was
radically decreased.
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Pe3srome

HcenenoBaH pocT INIOTHOCTH BO3MYITIEHUH B GapUOHHOM
cybcTparte, 00y CIIOBIEHHBI HECTAIIMOHAPHBIM U HETMHEHHBIM
XapakTepoM YPaBHEHHUS COCTOSHUS HeOapHOHHON MaTepHy BO
Bceenennoit. [TokazaHo, YTo IIpH TaKOM I10IX0/I€ OHU Y MEHBITIa-
IOTCS OT CBEPXBO3MYIIEHHOTO COCTOSIHUSA, T. €. OT BOIBIIoro
B3priBa.

Pe3siome

CraioHapIIs eMeC XoHe ChI3bIKTHI eMec KYH TeHIeYiMeH
CUTIATTANIATHIH, 6apUOHIBI eMeC MaTepusTHBbIH, epTe Famam-
JaFsl OApMOHIE MATEPUSIHBIH YHUTKYJIAPHIHLIH TaMybIHA
BCepiH 3epTTelli. byl YATKynap eTe yIIKeH IopexelcH Y JIKeH
ZKapruibicTaH GacTall TYCeTiHIirMH KOPCETTi.
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