В.Н. СТАЦЮК, С. АЙТ

(АО «Институт органического катализа и электрохимии им. Д.В. Сокольского», г.Алматы)

ВЛИЯНИЕ НТФ И ОЭДФ НА ИЗМЕНЕНИЕ pHs У ПОВЕРХНОСТИ СТАЛЬНОГО ЭЛЕКТРОДА

Аннотация

Проведены исследования по определению pH_S приэлектродного слоя стального электрода из нержавеющей стали в растворах, содержащих НТФ и ОЭДФ. Установлено, что pH_S отличается от объемных значений.

Ключевые слова: фосфоновые кислоты, НТФ, ОЭДФ, pH_s – приэлектродного слоя, циклические вольтамперные кривые, комплексонаты, максимумы тока, адсорбция.

Кілт сөздер: фосфонды қышқылдар, НТФ, ОЭДФ, электрод маңы қабатының pH_s , циклді вольтамперлік қисықтар, комплексонаттар, тоқ максимумы, адсорбция.

Keywords: Phosphonic acids, NTF, OEDF, $pH_{\rm S}$ – a by electrode layer, cyclic voltamperometric curves, complexonate, current maximum, adsorption.

Для измерения рН раствора, которое может быть вызвано изменением концентрации фосфоновых кислот (НТФ и ОЭДФ), могут быть использованы не только электроды для рН- метрии, но и металлические электроды с низким перенапряжением водорода, а также их сплавы. Однако, если использование электродов для рН – метрии позволяет определить рН в объеме раствора, то на металлических электродах, использование которых основано на фиксировании катодных вольтамперных кривых электровосстановления ионов водорода, создает условия для оценки изменения рН не только в объеме раствора, но и у поверхности электрода. Изменение pH_S у поверхности, подвергнутых коррозии металлов, имеет как прикладное значение для определения оптимального состава, концентрации ингибиторов и ингибиторных композиций, предотвращающих накипеобразование и коррозию, так и фундаментальное значение по установлению механизма формирования защитных пленок на поверхности металлов комплексонами и комплексонатами металлов на основе фосфоновых кислот. Следует иметь в виду, что изменение pH_s приэлектродного слоя может сказаться на ступенчатых константных кислотной диссоциации комплексонов фосфоновых кислот, на положении равновесия при гидроксофосфонатных, образовании смешанных протонрованных, полиядерных косплексов, на адсорбционные параметры комплексонов и комплексонатов. Наряду с влиянием на термодинамические параметры исходных и конечных продуктов,

обеспечивающих защитное действие ингибиторных пленок, изменение pH_S может привести к изменению кинетических параметров комплексов, которые определяются периодом полуобмена лигандов внутренней координационной сферы на молекулы воды [1]. Ранее нами было показано, что при наличии в исследуемом растворе $HT\Phi$ pH_S приэлектродного слоя для электрода из нержавеющей стали отличается от pH в объеме раствора. С увеличением концентрации $HT\Phi$ это отличие усиливается.

Нельзя исключить, что такое изменение (ΔpH) может быть одной из причин увеличения скорости коррозии металла с ростом концентрации НТФ в объеме раствора при фиксированном pH раствора.

Представляло интерес сопоставить влияние природы фосфоновых кислот на примере $HT\Phi$ и $OЭД\Phi$ на изменение pH_S – приэлектродного слоя. В настоящем сообщении приводятся экспериментальные данные по влиянию $OЭД\Phi$ на изменение pH_S в аналогичных условиях.

Методика эксперимента

Вольтамперные кривые (I–E) были получены с помощью потенциостата IPC – Pro MF (Россия) с фиксацией кривых на дисплее компьютера. Проведение электрохимического эксперимента осуществлялось в герметичной, термостатированной ячейке изготовленной из стекла «пирекс» с выносным электродом сравнения. В качестве рабочего электрода использовали дисковый электрод изготовленный из нержавеющей стали диаметром 2мм с видимой поверхностью S=3,14 мм². Вспомогательным электродом служила платиновая проволока с видимой поверхностью 23,5мм², а электродом сравнения насыщенный хлорсеребряный электрод марки ЭВЛ-1М3 с потенциалом 200 мВ относительно водородного электрода. Перед снятием циклических вольтамперных кривых поверхность рабочего электрода обновляли наждачной бумагой MIRKA 2000, полировали на бумажном фильтре (синяя лента) и окончательно промывали дистиллированной водой. Растворы готовили с использованием свежеперегнанной воды. Фоновом электролитом раствор 0.3M Na_2SO_4 (соль Na_2SO_4 «х.ч»). Комплексоны (нитрилтриметиленфосфоновая кислота N(CH₂ PO₃H₂)₃) и ОЭДФ (1-гидроксиэтилидендифосфоновая кислота (CH₃C(PO₃H₂)₂OH) имели квалификацию «ч.д.а.» Для измерения рН раствора использовали иономер рН – 150 МИ.

Результаты и обсуждения

На рисунке 1 приведены циклические вольтамперные кривые на электроде из нержавеющей стали в растворе $0.3M\ Na_2SO_4$ для разных концентраций $OЭД\Phi$.

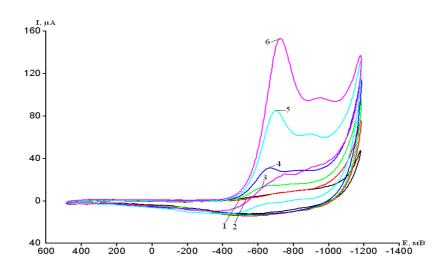


Рисунок 1 — Циклические вольтамперные кривые на нержавеющем электроде в растворе $0.3M \text{ Na}_2\text{SO}_4$, (pH=5,76) в присутствии разных концентрации ОЭДФ (pH=1,68) М: 1-0; 2- $3.98 \cdot 10^{-4}$; 3- $1.38 \cdot 10^{-3}$; 4- $3.29 \cdot 10^{-3}$;

5-1,02·10⁻²; 6-2,39·10⁻²

Концентрация ОЭДФ изменилась от $3.98 \cdot 10^{-4}$ до $2.39 \cdot 10^{-2}$ М. Из рисунка 1 следует, что в интервале потенциалов от -0,5 до -1,2В наблюдаются четко выраженные волны, которые с увеличением концентрации ОЭДФ приобретают вид волн с отчетливо выраженным максимумом. Важно отметить, что потенциалы наблюдаемых максимумов для ОЭДФ (рис.1) практически совпадают с потенциалами максимумов на катодных вольтамперных кривых для НТФ. Наряду со сходством на вольтамперных кривых для ОЭДФ и НТФ имеет место и отличие, которое проявляется в величине тока наблюдаемых максимумов. Совпадение потенциалов максимумов тока на катодных вольтамперных кривых, полученные на стальном электроде, для растворов НТФ и ОЭДФ свидетельствует о близкой природе электрохимических реакций на используемом электроде. Такими реакциями являются электровосстонавления ионов водорода. Увеличение тока наблюдаемых максимумов (рисунок 1) связано с ростом концентрации ионов водорода при введении в раствор 0,3M Na₂SO₄ ОЭДФ. Раствор 0,1M ОЭДФ в 0,3M Na₂SO₄ имеет pH=1,68, тогда как 0,1М НТФ в 0,3М Na_2SO_4 pH=1,29. Это обстоятельство приводит к тому, что концентрация ионов водорода в исследуемом растворе в присутствии НТФ становится больше, чем в растворах с ОЭДФ. Наблюдаемое отличие хорошо проявляется при сопоставлении зависимостей изменения рН раствора от концентрации НТФ (кривая 1) и ОЭДФ (кривая 2), рисунок 2 и является основной причиной более высокого значения тока для максимумов электровосстановления ионов водорода для НТФ, чем для ОЭДФ.

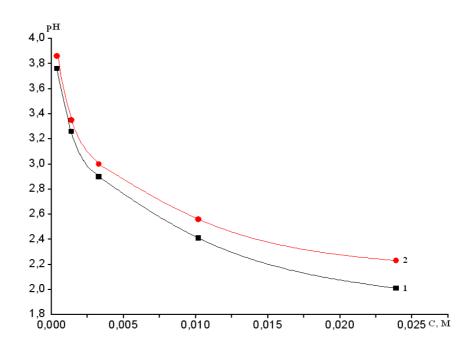
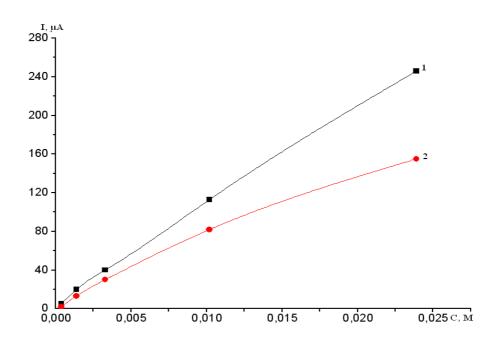



Рисунок 2 – Изменение рН от концентрации НТФ (кривая 1) и ОЭДФ (кривая 2) на нержавеющем электроде

в присутствии их разных концентраций в фоновом растворе 0,3M Na₂SO₄

Наиболее четко это проявляется на рисунке 3, на котором сопоставлены величины токов максимумов электровосстановления ионов водорода на стальном электроде из растворов НТФ (кривая 1) и ОЭДФ (кривая 2).

Рисунок 3 – Изменение тока катодной волны от концентрации НТФ и ОЭДФ на нержавеющем электроде

для разных концентраций НТФ(кривая 1) и ОЭДФ(кривая 2) в фоновом растворе 0.3M Na_2SO_4

В том случае, когда pH в объеме раствора $0.3M\ Na_2SO_4$ и $0.1M\ раствора\ HTФ$ и OЭДФ в $0.3M\ Na_2SO_4$ имеет одинаковое значение(pH= 5.76), величина pH исследуемого раствора при увеличении концентрации HTФ и OЭДФ практически не изменяется (рисунок 4).

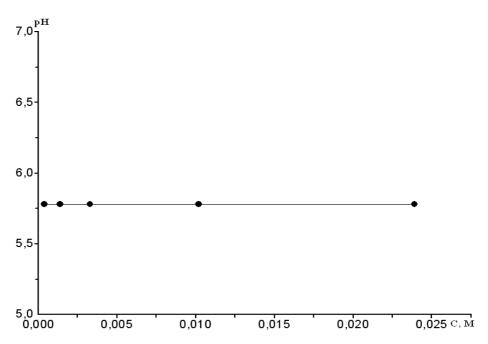


Рисунок 4 – Изменение pH раствора 0.3 Na $_2$ SO $_4$ (pH=5.76) на нержавеющем электроде в присутствии разных концентрации ОЭДФ и НТФ (pH=5.76)

Иная тенденция имеет место в изменении тока наблюдаемых волн при увеличении концентрации НТФ (кривая 1) и ОЭДФ (кривая 2) рисунок 5 при соблюдении условий постоянного pH раствора $0.3M\ Na_2SO_4$ и $0.1M\ HTФ$ и $0.1M\ OЭДФ$ (pH=5,76).

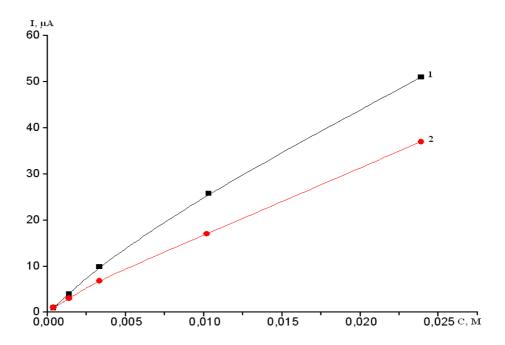


Рисунок 5 – Изменение тока катодной волны от концентрации НТФ (кривая 1) и ОЭДФ (кривая 2)

на нержавеющем электроде для разных концентраций в фоновом растворе 0,3M Na₂SO₄

Из рисунка 5 следует, что величина тока катодной волны в присутствии $HT\Phi$ (кривая1) растет заметно больше чем для аналогичных волн $OЭД\Phi$ (кривая 2) с увеличением их концентрации в объеме раствора.

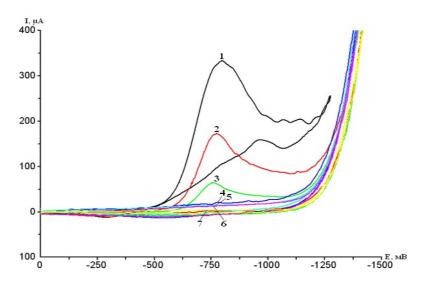


Рисунок 6 — Циклические вольтамперометрические кривые фонового электролита 0,3M Na₂SO₄ на нержавеющем электроде при разных значениях pH среды: 1- pH=1,6; 2- pH=2,0; 3- pH=2,5; 4- pH=4; 5- pH=5; 6-pH=5,7; 7- pH=8

Появление роста тока катодных волн на электроде из нержавеющей стали не зависит от концентрации основных и непротонированных форм используемых фосфонатов НТФ и ОЭДФ, а определяется концентрацией ионов водорода. В пользу изложенного выше может служить тот факт, что на вольтамперных кривых для стального электрода в растворе $0.3M\ Na_2SO_4$, не содержащем НТФ и ОЭДФ в кислых растворах, наблюдаются четко выраженные катодные вольтапмперные кривые (кривые 1-3, рисунок 6).

Однако, как следует из рисунка 6, при pH>5, (кривые 4, 5) на вольтамперных кривых катодный ток практически не наблюдается. Изменение величины тока электровосстановления ионов водорода на стальном электроде в 0,3M Na_2SO_4 от pH раствора представлено на рисунке 7.

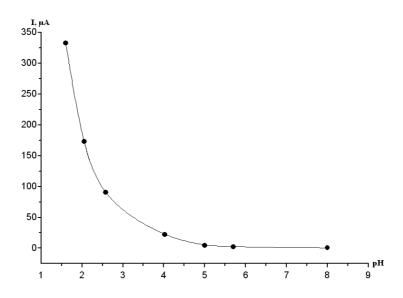


Рисунок 7 – Изменение тока катодной волны от pH в растворе 0,3M Na₂SO₄ на нержавеющем электроде

Исходя из вышеизложенного следует, что появление волн при катодной поляризации стального электрода в присутствии НТФ и ОЭДФ(pH= 5,76) обусловлено не изменением pH в объеме раствора, а у поверхности электрода. Известно, что фосфонаты способны адсорбироваться на стальном электроде [2]. Являясь слабыми многоосновными кислотами соединения НТФ и ОЭДФ в зависимости от pH могут находиться в виде протонированных или основных форм. В растворах близким к pH = 5- 6 согласно константам кислотной диссоциации этих соединений [3] НТФ может находиться в виде H_2 ntph⁴⁻ , H_3 ntph³⁻ и H_4 ntph²⁻ ; ОЭДФ - H_2 oedph²⁻ и H_3 oedph⁻. Адсорбируясь на поверхности электрода, протонированные формы НТФ и ОЭДФ являются источником протонодоноров, которые обеспечивают электровосстановления ионов водорода. Используя зависимость изменения катодных волн от pH на стальном электроде в растворе 0,3M Na_2SO_4 (рисунок 7) и изменение величины тока волн от концентрации НТФ и ОЭДФ (рисунок 5) можно оценить pH_8 у поверхности исследуемого электрода. Значения pH_8 для разных концентраций ОЭДФ и НТФ, представлены в таблице 1.

Таблица – 1 Значения pH_s НТФ, pH_s ОЭДФ в приэлектродном пространстве стального электрода и их отличие ΔpH от объемных значении в растворах с разной концентраций НТФ и ОЭДФ

C, M	рН в объеме	pH_{S}	pH_S	ΔрН	ΔрН
	(НТФ и ОЭДФ)	НТФ	ОЭДФ	НТФ	ОЭДФ
3,98·10 ⁻⁴	5,76	4,62	5,76	1,14	0
1,38·10 ⁻³	5,76	4,48	5,45	1,28	0,31
3,29·10 ⁻³	5,76	4,22	4,85	1,54	0,91
1,02·10 ⁻²	5,76	3,67	4,25	2,09	1,51
2,39·10 ⁻²	5,76	3,30	3,57	2,46	2,19

ЛИТЕРАТУРА

- 1 Тоуб М. Механизмы неорганических реакций. М.: Мир, 1975. 275 с.
- 2 Кузнецов Ю.И., Раскольников А.Ф. Роль природы лигандов в ингибировании коррозии металлов фосфатами // Защита металлов. 1992. Т. 28. №5. С. 707-724.
- 3 Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов . М.: Химия, 1988. 543 с.

REFERENCES

- 1 Toub M. Mir **1975**, 275 C (in Russ.).
- 2 Kuznecov Ju.I., Raskol'nikov A.F. Zashita metallov, 1992, 28, 5, 707-724 (in Russ.).
- 3 Dyatlova N. M., Temkina V.Ya., Popof K.I. Himia. 1988, 543 (in Russ.).

Резюме

В.Н. Стацюк, С. Айт

(«Д.В. Сокольский атындағы Органикалық катализ және электрохимия институты» АҚ, Алматы қ.)

НТФ ЖӘНЕ ОЭДФ-ТІҢ БОЛАТ ЭЛЕКТРОДЫНЫҢ БЕТТІК ҚАБАТЫНДАҒЫ РН $_{
m s}$ -ТІҢ ӨЗГЕРІСІНЕ ӘСЕРІ

Құрамында НТФ және ОЭДФ бар ерітінділерде тоттанбайтын болаттан жасалған электродтың электрод маңы қабатының р H_s - ын анықтау бойынша зерттеулер жүргізілді. р H_s - тің мәні көлемдегі мәндерінен ерекшеленетіндігі анықталынды.

Кілт сөздер: фосфонды қышқылдар, НТФ, ОЭДФ, электрод маңы қабатының –рН_s, циклді вольтамперлік қисықтар, комплексонаттар, ток максимумы, адсорбция.

Summary

V. N. Statsjuk, C. Ait

(Institute for organic Catalysis and electrochemistry. D.v.Sokolsky», Almaty)

INFLUENCE OF NTF AND OEDF ON PH_S CHANGE AT A SURFACE OF A STEEL ELECTRODE

Researches on definition of pH_s of a byelectrode layer of a steel electrode from stainless steel in solutions of containing NTF and OEDF are conducted. It is established that pH_s – differs from volume values.

Keywords: Phosphonic acids, NTF, OEDF, pH_s – a by electrode layer, cyclic voltamperometric curves, complexonate, current maximum, adsorption.

Поступила 11. 03.2013 г.