Б. ТУКТИН, Л.Б. ШАПОВАЛОВА, Р.И. ЕГИЗБАЕВА, А.А. ШАПОВАЛОВ

(Институт органического катализа и электрохимии им. Д.В.Сокольского г. Алматы)

НЕОКИСЛИТЕЛЬНАЯ КОНВЕРСИЯ МЕТАНА

В АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ НА Mo/Al₂O₃ и Mo - Co /Al₂O₃ КАТАЛИЗАТОРАХ, ПРОМОТИРОВАННЫХ ЦЕОЛИТОМ ZSM

Аннотация

Исследовано влияние температуры и длительности опыта на степень конверсии метана и состав образующихся соединений в процессе его неокислительной переработки на Mo/Al_2O_3+ZSM и $Mo-Co/Al_2O_3+ZSM$ катализаторах.

Ключевые слова: метан, ZSM цеолит, катализатор.

Тірек сөздері: метан, ZSM цеолит, катализатор.

Keywords: methane, zeolite ZSM, catalyst.

Ароматические углеводороды, в особенности бензол, толуол, этилбензол и ксилолы, являются важными химическими продуктами массового производства в нефтехимической промышленности. В настоящее время ароматические соединения в основном получают из фракций нефти, используя процессы каталитического реформинга и каталитического крекинга. Однако по мере того, как мировые запасы нефти уменьшаются, возрастает потребность альтернативных источников ароматических углеводородов. Одним возможным альтернативным источником получения ароматических углеводородов служит метан, который является основным компонентом природного газа и биогаза. Начиная с 90-х годов прошлого века, проводятся исследования по прямому преобразованию СН₄ в бензол. Ароматизация метана является частью более широкой проблемы ароматизации алканов. Ароматизация н-алканов преследует двойную цель: получение высокооктанового жидкого топлива и отдельных ароматических углеводородов для нефтехимического синтеза [1-4].

В данной работе представлены результаты изучения процесса неокислительной конверсии метана на Mo/Al_2O_3+ZSM и $Mo-Co/Al_2O_3+ZSM$ катализаторах. Исследовано влияние температуры и продолжительности проведения реакции на степень превращения метана и состав образующихся соединений.

Экспериментальная часть

Исследован процесс неокислительной конверсии метана на $Mo/Al_2O_3 + ZSM$ и $Mo-Co/Al_2O_3 + ZSM$ – катализаторах. Процесс проводили в установке проточного типа при варьировании температуры в пределах $600-800^{\circ}C$ и P=0,1 МПа, соотношение метан : аргон =1 : 1. Объемная скорость подачи метана 2004^{-1}

Катализаторы готовили методом пропитки Al_2O_3+ZSM композиции водными растворами азотнокислых солей молибдена и кобальта с последующей обработкой в токе воздуха при $550^{\circ}C$ в течение 5 ч.

Состав исходных и образующихся соединений анализировали на хроматографе ЛХМ-8, колонка 350·0,5 см, фазой; 15% ПЭГ- 20 000, нанесенного на полисорб -1. Структура и состояние активных центров катализаторов исследованы с помощью ТПД аммиака и ИКспектроскопии [5-6].

Результаты и обсуждение

В таблице 1 представлены данные о влиянии температуры и продолжительности проведения процесса на степень превращения и состав образующихся соединений при его неокислительной конверсии в ароматические углеводороды на Mo-Co/Al₂O₃+ZSM – катализаторе. Установлено, что в отличие от монометаллического Mo/ Al₂O₃+ZSM уже при температуре 600° C и τ =60 мин конверсия CH₄ равна 46,9%. В продуктах реакции обнаружен бензол, содержание которого в катализате равно 2,0%. Через 150 мин от начала реакции конверсия метана снижается до 37,1% (С_{бензола} = 9,8%).

Процесс стабилизируется, конверсия метана далее практически не меняется: при τ =240 мин ее величина равна 36,8%, количество образующегося бензола = 10,7%.

При $t=650^{\circ}$ стабильная конверсия метана составляет ~ 32,3-32,8%, причем не меняется длительное время (5,5 час). Количество образующегося бензола достигает 42,1%.

При 700° С – конверсия в первые 150 мин повышается до 48,2% (от 41,9% при $\tau = 60$ мин). Более длительная продолжительность процесса сопровождается некоторым понижением количества превращенного метана: – до 42,1% при τ =330 мин. Выход бензола при этом растет экстремально от 1,1 (τ =60 мин) до 39,6% (τ =240 мин), затем снижается до 32,2% (τ =330 мин)

При температуре опыта 750° С максимальная конверсия CH_4 , равная 44,7%, достигается при продолжительности опыта 90 мин. Затем начинает снижаться. Однако даже по прошествии длительного времени (τ =270 мин) конверсия метана остается достаточно высокой -29,7%. Максимальный выход бензола 46,7- 47,5% наблюдается при τ =150-210 мин, но незначительно снижается при дальнейшем продолжении опыта -42,5% (τ =270 мин).

При повышении температуры до 800° имеют место аналогичные закономерности протекания процесса ароматизации метана. Максимальная конверсии $CH_4 = 41,7\%$ устанавливается при $\tau=120$ мин, уменьшаясь через 5 часов после начала опыта до 35,3% ($\tau=300$ мин). Выход бензола растет от 7,7% ($\tau=90$ мин) до 43,4% ($\tau=180$ мин), оставаясь постоянным длительное время: при $\tau=300$ мин содержание бензола в катализате равно 44,0%.

Температура,	τ,	Конверсия	Состав катализата,%				
°C	МИН	метана, %	метан	бензол	толуол	ксилол	
600	60	46,9	98,0	2,0			
	90	33,3	91,7	6,0		2.3	
	150	37,1	89,9	9,8	0,4		
	180	34,9	90,2	8,5		1.3	
	240	36,8	89,3	10,7			
650	110	32,3	95,7	1,6	2,7		
	180	33,8	81,3	18,4			
	220	24,8	64,1	35,2	0,2		
	260	32,7	60,9	37,5	0,9		
	300	32,3	58,5	40,4			
	330	32,8	56,9	42,1			
700	60	41,9	98,9	1,1		2,0	
	90	38,2	88,3	9,0	0,7		
	120	46,7	81,9	15,9	0,8	1,4	
	150	48,2	67,3	29,1	0,3	0,48	
	210	40,3	65,4	34,0	0,6		
	240	47,7	57,7	39,6	0,9	1,9	
	300	30,9	62,3	37,0	0,8		
	330	42,1	67,2	32,2	0,7		
750	35	39,9	99,2	0,8			
	60	38,5	86,4	10,3			
	90	44,7	70,8	28,6	0,6		
	120	42,7	50,8	44,8	4,4		
	150	37,3	50,6	46,7	2,7		
	180	36,4	50,0	46,2	4,0		
	210	38,4	48,7	47,5	3,8		

	240	32,3	51,4	44,9	3,7		
	270	29,7	54,5	42,5	3,0		
800	90	36,4	92,3	7,7			
	120	41,7	72,3	27,7			
	150	35,8	59,6	39,5	0,9		
	180	36,9	55,8	43,4	0,9		
	210	32,0	57,1	42,0	0,9		
	240	38,1	53,5	45,3	1,2		
	300	35,3	54,8	44,0	1,2		
Объемная скорость подачи метана 200ч-1							

Следует отметить, что наряду с ароматическими соединениями, при неокислительной переработке метана на $Mo-Co/Al_2O_3 + ZSM -$ катализаторе образуется водород и незначительные количества оксидов углерода.

Анализ данных, приведенных в таблице 1, показывает, что при равной продолжительности опыта, например 240 мин, с ростом температуры опыта от 600 до 700° C конверсия CH₄ растет от 36,8 до 47,7%, понижалась до 38,1% при 800° C. В этих условиях количество образующихся бензола растет от 10,7 до 45,3%. Кроме того, при 800° C в катализате обнаружен толуол (1,2%).

Специальными опытами было показано, что после регенерации в течение 2^x часов при 550° С в токе воздуха катализатор Mo-Co/ Al_2O_3 +ZSM практически не теряет активность (таблица 2). При равной продолжительности опыта до и после регенерации (например, при τ =180 мин) конверсия CH_4 равна 36,9 и 38,0 % соответственно, количество бензола 43,4 и 45,4% соответственно.

При температуре 700° С проведены длительные испытания катализатора Mo-Co/Al₂O₃+ZSM на стабильность в процессе неокислительной конверсии метана в ароматические углеводороды (таблица 3). Полученные результаты показывают, что катализатор сохраняет активность в течение длительного времени. Максимальная конверсия метана, равная 50,7-51,4%, устанавливается при продолжительности опыта 390-430 мин. Спустя 11 часов ($\tau=660$ мин), ее величина составляет 31,1%. Следует отметить, что количество образующих ароматических соединений мало меняется в течение длительной работы катализатора и колеблется в пределах 41,0-43,0%.

Таблица 2 — Неокислительная конверсия метана на Mo-Co/Al $_2$ O $_3$ +ZSM — катализаторе до и после его регенерации

Температура, °С	τ,	Конверсия		Состав кат	ализата, %)
	мин	метана, %	метан	бензол	толуол	ксилол
800	90	36,4	92,3	7,7		
	120	41,7	72,3	27,7		
	150	35,8	59,6	39,5	0,9	
	180	36,9	55,8	43,4	0,9	
	210	32,0	57,1	42,0	0,9	
	240	38,1	53,5	45,3	1,2	
	310	35,3	54,8	44,0	1,2	
800	45	42,7	97,1	2,9		
(после	60	44,9	78,9	25,1		
регенерации)	90	36,7	52,3	46,5	1,0	0,2
	120	24,0	56,3	40,5	0,9	2,4
	180	38,0	49,8	45,4	2,2	2,6
	250	29,2	62,4	35,8	1,8	
	320	23,7	62,6	34,3	3,1	
Объемная скорост	гь подачи ме	стана 200ч ⁻¹				

Таблица 3 — Изучение стабильности Mo-Co/Al $_2$ O $_3$ +ZSM — катализатора в процессе неокислительной конверсии метана

Температура, °С	τ,	Конверсия	Состав катализата,%			
	мин	метана, %	метан	бензол	толуол	ксилол
700	60	41,9	98,9	1,1		2,0
	90	38,2	88,3	9,0	0,7	
	120	46,7	81,9	15,9	0,8	1,4
	155	48,2	67,3	29,1	0,3	0,48

	210	40,3	65,4	34,0	0,6	
	245	47,7	57,7	39,6	0,9	1,9
	330	42,1	67,2	32,2	0,7	
	360	45,2	55,8	41,0	1,9	7,4
	390	50,7	49,6	41,6	2,4	1,9
	430	51,4	49,9	42,2	3,8	4,5
	510	38,6	64,9	33,0	2,1	
	540	29,5	54,5	43,8	1,7	
	580	30,0	54,7	42,8	2,5	
	620	30,2	54,0	43,1	2,8	
	660	31,1	55,4	41,4	3,2	
Объемная скорос		<u> </u> метана 200ч ⁻¹				

Объемная скорость подачи метана 200ч-1

Сравнение результатов, полученных при исследовании процесса ароматизации метана на монометаллическом Mo/Al_2O_3 +ZSM и биметаллическом $Mo-Co/Al_2O_3$ +ZSM – катализаторах, показывает, что модифицирование монометаллического молибденсодержащего катализатора введением кобальта, повышает его активность и продолжительность времени стабильной работы (таблицы 1 и 4).

Таблица 4 - Неокислительная конверсия метана на $Mo/A1_2O_3+ZSM$ – катализаторе.

Температура, °С	τ,	Количество поглащенного метана, %	Состав катализата,%				
	мин		метан	бензол	толуол	Ксилолы	
700	60	18,7	99,5	0,5			
	90	15,1	95,7	4,3			
	120	19,0	77,9	22,1			
	150	17,4	64,8	34,6	0,6		
	180	10,8	64,6	34,6	0,8		
750	60	21,8	98,5	1,5			

	90	20,9	89,9	10,1				
	120	17,7	79,3	20,7				
	150	29,8	70,1	28,9	1,0			
	180	15,7	62,9	35,3	1,8			
	210	15,2	60,4	37,9	1,7			
800	60	16,8	88,8	11,2				
	90	16,9	63,3	36,1	0,6			
	120	13,7	59,1	39,9	1,0			
	150	12,5	60,5	35,1	3,2	1,2,		
	190	12,9	56,3	35,6	3,3	4,8		
Объемная скорость подачи метана 200ч ⁻¹								

Активность катализаторов связана со структурой поверхности, фазовым составом и состоянием модифицирующих добавок. Удельная поверхность и суммарный объем пор Mo/Al_2O_3+HZSM катализатора, определенные методом БЭТ, равны 344,7 м²/г и 0,36 мл/г, а $Mo-Co/Al_2O_3+ZSM$ катализатора -320,0 м²/г и 0,28 мл/г соответственно. На Mo/Al_2O_3+HZSM катализаторе преобладают поры с D=0,2 нм, на $Mo-Co/Al_2O_3+ZSM$ катализаторе -0,2 и 0,55-0,75 нм. Таким образом, сравнение этих величин показывает, что активность катализатора практически не зависит от размера поверхности, объема и размера пор.

Поведение цеолитсодержащих катализаторов в большей степени зависят от природы компонентов, структуры и состояния активных центров. В работах [7-10] отмечалось, что кислотно-основные характеристики катализаторов имеют существенное значение для процесса неокислительной конверсии метана. Кислотные характеристики Mo/Al_2O_3+HZSM катализатора исследованы методом температурно–программированной десорбции аммиака. Методом ТПД показано, что аммиак на монометаллическом молибденсодержащем катализаторе адсорбируется в трех формах. Слабоадсорбированный аммиак десорбируется с t_{max} = 160°C, более прочно связанный аммиак десорбируется при t_{max} = 200-350 и 450°C. Количество их — 14,17, 6,49 и 10,36 • 10-4 моль NH₃/г катализатора соответственно. Суммарная кислотность равна 31,02•10-4 моль NH₃/г катализатора.

Введение кобальта в состав Mo/Al₂O₃+HZSM меняет кислотные характеристики катализатора: температурные максимумы десорбции аммиака смещаются в область более высоких значений до 195, 220-370 и 460 $^{\circ}$ C . Количество NH_{3адс} составляет 11,55 • 10⁻⁴ (195 $^{\circ}$ C); 5,42 • 10⁻⁴ (220-370 $^{\circ}$ C), и 9,88• 10⁻⁴ (460 $^{\circ}$ C) моль NH₃/г катализатора. Суммарное количество аммиака, десорбирующегося с поверхности Mo-Co /Al₂O₃+HZSM-катализатора, равно 26,85 • 10⁻⁴ моль NH₃/г катализатора, т.е.несколько ниже, чем для Mo/Al₂O₃+HZSM.

Эти результаты согласуются с данными ИК –спектроскопии молекулы-зонда СО. В ИК- спектрах оксида углерода, хемособированного на поверхности Mo/Al_2O_3+HZSM катализатора при 250°C, имеются п.п.2155 и 2120 см⁻¹, относящиеся к СО, линейно адсорбированному на M^{n+} - центрах, которые, в соответствии с [6], могут работать как льюисовские кислотные центры. При повышении температуры адсорбции СО на Mo/Al_2O_3+HZSM до 350 °C наблюдается смещение п.п. 2195, 2140 см⁻¹.

В ИК-спектрах молекулы — зонда СО, хемосорбированной на поверхности биметаллического Mo-Co/Al₂O₃+ZSM катализатора при 250°C, имеются интенсивные п.п. при 2150 и 2125 см $^{-1}$ — характеризующие линейную адсорбцию СО на M $^{\rm n+}$ - центрах. При повышении температуры адсорбции СО на Mo-Co/Al₂O₃+HZSM до 350 °C происходит смещение п.п. до 2160 и 2135см $^{-1}$. и наблюдается снижение их интенсивности. После вакуумирования в ИК-спектре обнаружены п.п. 3600-3000, 2900-2800, 1600 и 1080 см $^{-1}$

Таким образом, модифицирование Mo/Al_2O_3 +ZSM – катализатора введением кобальта, меняет кислотные характеристики монометаллической системы, повышая активность и продолжительность времени стабильной работы в процессе неокислительной конверсии метана.

ЛИТЕРАТУРА

- 1 *Lunsford J. H.* Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century // Catalysis Today 2000. V. 63 / P. 165–174;
- 2 Skutil Π , Taniewski M. Some technological aspects of methane aromatization (direct and via oxidative coupling) // Fuel Processing Technology 2006. V. 87. P. 511–521;
- 3 *ChoudharyT.V., Aksoylu E.*, and Goodman D.W. Nonoxidative Activation of Methane // Catalysis reviews . 2003. Vol. 45, No. 1, pp. 151–203.
- 4 *Госсен Л. П., Величкина Л. М.* Экологические проблемы использования нефтегазовых запасов и получения высококачественных нефтепродуктов// Нефтехимия.2012. Т.52. №2. С.154-158]
- 5 *Ющенко В.В., Захаров А.Н., Романовский Б.В.* О применении метода температурнопрограммированной десорбции к исследованию кислотных свойств высококремнистых цеолитов // Кинетика и катализ. 1986. Т. 27, № 2.-С. 474-478.
- 6 *Паукштис Е.А.* Инфракрасная спектроскопия в гетерогенном кислотно-основном катализе. Наука. Новосибирск, 1992, 254с
- 7 Восмериков А.В., Ечевский Г.В., Коробицына Л.Л., Барбашин Я.Е., Арбузова Н. В., Коденев Е. Г., Журавков С. Дезактивация Мо-содержащих цеолитов в процессе неокислительной конверсии метана // Кинетика и катализ.2005.Т.46.№5.С.769-772

- 8 Восмериков А. В., Зайковский В.И., Коробицына Л. Л.Ечевский Г. В. Козлов В. В., Барбашин Я. Е., Журавков С. П.Неокислительная конверсия метана в ароматические углеводороды на Ni–Mo/ZSM-5 катализаторах //Кинетика и катализ. 2009. Т. 50.№ 5. С. 755-763
- 9 Восмериков А. В., Ечевский Г. В., Коробицына Л. Л. Арбузова Н. В., Коденев Е. Г., Величкина Л. М, Журавков С. П. Неокилительная конверсия метана в ароматические углеводороды на W-содержащих пентасилах // Кинетика и катализ. 2007. Т. 48 . №3. С. 432-437
- 10 <u>Vosmerikov</u> A. V., <u>Zaikovskii</u> V. I., <u>Korobitsyna</u> L. L., <u>Kozlov</u> V. V., <u>Arbuzova</u> N. V., <u>Zhuravkov</u> S. P. Methane conversion into aromatic hydrocarbons over Ag-Mo/ZSM-5 catalysts // Кинетика и катализ, 2011, V. 52, № 3, P. 427-433.

REFERENCES

- 1 Lunsford J. H. Catalysis Today, 2000, 63, 165-174.
- 2 Skutil L, Taniewski M. Fuel Processing Technology, 2006, 87, 511-521.
- 3 Choudhary T.V., Aksoylu E., Goodman D.W. Catalysis Reviews, 2003,45, 151-203.
- 4 Gossen L.P., Velichkina L.M. Neftehimiya, 2012, 52,154 -158 (in Russ)
- 5 Yushchenko V., Zakharov A., Romanovsky B.V. *Kinetics and Catalysis*, **1986**, 27, 474-478 (in Russ).
- 6 Paukshtis E.A. *Infrakrasnya spectroskogia v geterogennom kislotno-osnovnom katalze*. Nauka., **1992**, 254 (in Russ).
- 7 Vosmerikov A.V., Echevsky G.V., Korobitsyna L.L., Barbashin Y.E., Arbuzov N.V, Kodenev E.G., Zhuravkov S.P. *Kinetics i kataliz*, **2005**, 46, 769 -772 (in Russ).
- 8 Vosmerikov A,V., Zaikovskii V.I., Korobitsyna L. L., Echevsky G.V., Kozlov V., Barbashin J.E., Zhuravkov S. P. *Kinetics i kataliz*, **2009**,50, 755-763 (in Russ).
- 9 Vosmerikov A.V., Echevsky G.V., Korobitsyna L.L., Arbuzov N.V., Kodenev E.G., Velichkina L.M., Zhuravkov S.P. *Kinetics i kataliz*, **2007**, 48432-437 (in Russ)/
- 10 Vosmerikov A. V., Zaikovskii V. I., Korobitsyna L. L., Kozlov V. V., Arbuzova N. V., Zhuravkov S. P. *Kinetics i kataliz*, **2011**, 52, 427-433 (in Russ).

Резюме

Б. Түктин, Л.Б. Шаповалова,, Р.И.Егізбаева, А.А. Шаповалов

(Д.В.Сокольский атындағы Органикалық катализ және электрохимия институты, Алматы)

ZSM ЦЕОЛИТІМЕН ПРОМОТОРЛАНҒАН MO/AL $_2$ O $_3$ ЖӘНЕ MO-CO/AL $_2$ O $_3$ КАТАЛИЗАТОРЫНА МЕТАНДЫ АРОМАТТЫ КӨМІРСУТЕКТЕРГЕ ТОТЫҚТЫРМАЙ КОНВЕРСИЯЛАУ

Метанның өзгеріске ұшырауына тәжірибе температурасы мен ұзақтығының әсері және Mo/Al_2O_3 , $Mo-Co/Al_2O_3$ катализатор қатысында тотықтырмай өңдеу процесінде түзілген қосылыстар құрамы зерттелді.

Тірек сөздері: метан, ZSM цеолит, катализатор.

Summary

B. Tuktin, L.B. Shapovalova, R.I.Egizbaeva, A.A .Shapovalov

(Institute of Organic Catalysis and Electrochemistry of D.V. Sokolsky, Almaty)

NON-OXIDATIVE CONVERSION OF METHANE TO AROMATIC HYDROCARBONS ON MO/AL_2O_3

AND MO-CO/AL2O3 CATALYSTS PROMOTED BY ZEOLITE ZSM

The influence of temperature and duration of the experience on the non-Oxidizing conversion of methane and the composition of the compounds formed in the course of its processing on Mo/Al_2O_3 and $Mo-Co/Al_2O_3$ catalyst.

Keywords: methane, zeolite ZSM, catalyst.

Поступила 07.11.2013 г.