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The density of states of many-particle excitations is calculated using the Hubbard model. For interacting
electrons in a one-dimensional disordered system the coulomb repulsion between strongly localized electrons results
in the delocalization.
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1. Introduction. In the beginning of the 21st century, considerable advances in the controlled fabrica-
tion of sub-micron solid state structures, as well as the common availability of low temperature facilities,
have allowed for a systematic investigation of artificially made structures whose electronic properties are
modified or even dominated by quantum interference effects. This makes it possible to perform
experiments in the mesoscopic regime which directly probe quantum properties of phase coherent many-
body systems. While a variety of phenomena can be understood within a weakly interacting quasi-particle
approach [1], the always present strong Coulomb interaction between clectrons can have a dramatic
influence on the transport properties when the electrons are confined in low-dimensional systems. A
prominent example is the Coulomb blockade effect and the resulting conductance oscillations in the
transport through quantum dots [2].

Insights towards lower dimensions or very dilute limits results in a poorer screening of the electron-
electron interaction, enhancing the role of Coulomb repulsions. When the disorder is strong, quantum
interference leads to Anderson localization [3] of the electron wave functions. The resulting suppression
of the mobility of the charge carriers becomes also detrimental to screening, thereby further amplifying the
role of interactions. On can therefore expect important effects of the electron-electron interaction and.
Even a breakdown of the Fermi-liquid quasi-particle approaches in confined and disordered systems might
be expected.

Recent experiments [4,5] have asked for reexamination of the scaling theory of localization, which
predicts only localized states in one or two spatial dimensions (2D). This result has been obtained when
neglectting coulomb interactions. Interplay between disorder and interaction can lead also to the break-
down of the one-parameter scaling hypothesis.

In this paper we consider two interacting electrons as a staring point for treating interactions in a
random potential. Some researches suggested that a suitably defined localization length of the two-particle
states %, in one-dimensional disordered potential can me much larger than the one-particle localization
length %;. Numerically an enhancement of the localization length was found by considering, for example,
a transfer matrix calculations for finite samples and for a ‘bag model” [6] or direct diagonalization [7], but
a unifying picture does not exist yet.

2. Localization length enhancement. Here, we report results of extensive numerical calculations for
the spectrum of the two-¢lectron energies and the localization length. For the latter, one can use the center-
of-mass (CM) coordinate system and apply the transfer matrix method to the bag model, in contrast to the
carlier investigations [6,7]. The two-electron density of states shows a behavior, which is very similar to
that of the one electron behavior in two-dimensional disordered solids. Near the centre of the spectral band
the energy level statistics shows a crossover from the Poisson law towards the Wigner-Dyson statistics
when interaction energy is increased. This was found in paper [7] by applying a powerful technique of the
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probability calculation of the fluctuations in the discrete spectra of the electron states near the ground
state. For the localization length we find that many-particle localization length exceeds the single-particle
localization length at the same strength W of the disordered impurity potential:

Ma(W.b) > M(W). (D

These findings were similar to the previous results in papers [5-7]. However, this enhancement is
almost independent of the interaction as long as the range of the latter is much smaller than the ‘bag size’.
Therefore the largest relative coordinate is defined by the following relation:

bErmax > (2)

where b is the ‘bag size’, which the largest interparticle distance.

Using the finite size scaling we extract the localization length for the limiting case 5—o. Therefore we
present strong evidence for the two-dimensional system that the disorder scaling of the localization length
in the infinite system at the thermodynamic limit is governed by the following exponential expression:

ha(W,0) ~ exp(1/I°), 3)

independent of whether or not a finite range interaction is present. We used the Schrodinger equation
discretized in the CM coordinates

Wiy ~Wron TWee Ve, tUMR, = Eyy,, “4)

where R = (x; + x,)/2, and r = (x; - x,)/2, are the center-of-mass and the relative coordinates, respectively.
Here U(r) is the interaction and }is the random potential. Apart from correlations in the random potential,
(Ve +Vr+), the equation (4) can also be considered as the Schrodinger equation for a particle in two-
dimensional non-interacting system. Alternatively, one can view on expression (1) as describing two
degrees of freedom, which “interact" via a random coupling (Vz,+Vr.,), while one of the particles subject
to a potential energy U. Considering a finite range of the relative distance, |#| < b, we obtain the bag model
in the CM coordinates, for which we perform a transfer-matrix analysis [8]. The inverse of the smallest
Lyapunov exponent defines the localization length of the two electrons, ,. In Fig. 1 (inset), A, is shown
as a function of the disorder, ¥, for different bag sizes b at £ = 0. With these data we performed a finite
size scaling, as shown in the main Figure. All points collapse in one common monotonic curve. The
scaling works perfectly with an accuracy of 1%. The plot of Fig. 2 demonstrates the disorder dependence
of the scaling parameter %, in comparison with the single-particle results in 1D and 2D, as well with results
obtained within the bag model using particle coordinates [8]. For larger disorder our findings coincide
with previous ones, however for small W they behave as A.p, that is the result for a single particle in 2D.
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Fig. 1. Scaling curve for the reduced renormalized localization length of two interacting particles A= A,/b.
Inset: raw data A,() for b = 10, 20, 40, 70,100 and 200 (top to bottom)
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Fig. 2. Localization length %,p for one-electron approximation in two-dimensional disordered system (Q);
scaling parameter A, fitted by 13.6/Wexp(9.6// '), shown by symbol (x); %, in single particle coordinates (0) and A, (+)

From the above numerical results, we conclude in agreement with earlier suggestions, that the locali-
zation length of two particles in a random potential is enhanced by the interaction. However, in contrast to
carlier work, we find for smaller disorder (W < 4) a much stronger delocalization effect. This might be an
effect of the discretization in CM coordinates which induces a strong correlation between the particles. On
the other hand, the description with discretized CM coordinates becomes asymptotically correct for small
disorder such that the disorder potential can be considered as representing a coupling between two degrees
of freedom.

3. Quantum diffusion. Using a decomposition method 8, we calculated the time evolution of two-
particle wave functions in particle coordinates. For short times, the mean radius, of the wave function
grows ballistically, for intermediate times it grows logarithmically before it saturates for t—oo. The
saturation value was used to estimate the localization length, shown in Fig. 3 as a function of disorder W
and interaction strength U. In the range 2 < W < 6 we observe the power-law behavior d,~ W
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Fig. 3. Two-electron localization length A,(/) obtained
from time evolution calculations with and without interaction

For U = 0 the fit yields 0=1.95 £+ 0.11, that corresponds to the correct zero-interaction limit. The
interaction-induced enhancement is smaller than that obtained carlier in paper [4], since many states with
smaller A, contribute also to the quantum diffusion. For U = 1, we find a = 2.27+0.09. Using only the
extension in the CM direction, the enhancement is more pronounced,

)\QCM(U: 1) NWZA.
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We also determined the localization length by using the inverse participation ratio and the mean
relative extension. Independently of the method, %, is enhanced at small U and decreases at large U. The
maxima of A, are located at |U|= 2, consistent with the results from the level statistics.

4. Energy level statistics. In order to study the spectral properties we consider the Hamiltonian of the
two electrons in a disordered one-dimensional potential regular lattice of the length L with the repulsive
on-site interaction Ud;;. In fact, we deal with the well-known Hubbard model for correlated electrons on a
single lattice site. Consider the spectrum of quantum particles in a random potential using the Anderson
model with interaction. The Hamiltonian of the model on a simple 1D lattice is given by

U
+ + +
H = Z €iCicCrc + Z £ (€56Camo + CoCrama) T E Z H6Mjo> )
J.o

J.m#0,0

+ o 3 2 s - "
where ¢, creates an electron on the j-th site of a lattice. 7, , =¢,,¢; , ist he operator of the occupation

number on the j-th site with the spin o. The random potential is introduced via the on-site energies e,
(diagonal disorder). They are uniformly and independently distributed in the interval from -W#/2 to W/2,
1.€. according to the "box' distribution. Thus, the disorder parameter # is given as a width of the uniform
distribution of random bear energies. The Hamiltonian matrix is constructed in the basis of the L(L+1)
symmetrized products of single-clectron wave functions. The total spin of the electron problem in question
is equal to zero. The model Hamiltonian has been diagonalized with periodic boundary conditions. The
density of multi-electron states p,(£) has been determined for various disorder degree W and Hubbard
interaction potential U. The results of our numerical calculations are demonstrated on Fig. 4. The obtained
two-electron density of states in one-dimensional disordered system 1is strikingly similar to that of a single
particle in a two-dimensional disordered square lattice. For fixed degree of the disorder W the density of
states decreases only slightly near the middle of the spectral band, when interaction energy is increased.
This is in favor of the Hubbard band which separates by detaching from the main spectrum for sufficiently
large interaction U. It contains order of ~1/L states and vanishes for the infinite sizes. This is because the
total number of electrons is fixed (the dilute limit). The form of the main band is quite insensitive to the
strength of the electron-electron interaction.
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Fig. 4. Two-electron density of states p,(F) of a one-dimensional system of length =100 with various interaction energies U/

However the statistics of the energy levels at the band centre £=0 changes drastically with increasing
Hubbard interaction energy U for certain given pairs of disorder W and system size /.. The nearest level
spacing distribution P(s) shows a crossover from Poisson distribution to the Wigner-Dyson distribution
and other way around, both with increasing the interaction energy U, as depicted in the Fig. 5. This
transition of the level statistics is measured by the parameter
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which defines the relative deviation from the Wigner distribution. Here

<s2> = IszP(s)ds (6)
0
is the spacing variance. The subscript labels indicate the Poisson (P) and Wigner-Dyson (W) distribution
are used. The level spacing is measured in units of the mean level spacing for two-particle spectrum A..
The disorder has been chosen such that

L =1,=105/W*, (7)
Results are shown in the inset of Fig. 5.
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Fig. 5. Level spacing distribution P(s) for the interaction energy 1/=0.01,0.03,0.1,0.2,0.5,1.0 (left to right) at the centre
of the spectral band £=0 for disorder degree #=1. Inset: parameter vy (see text) vs. U for various I/

4. Conclusions. We investigate the influence of the interplay between disorder and interaction on
several properties that give insight into transport of charge carriers in a one-dimensional random potential.
These are the quantum diffusion of wave packets, the statistical correlations of the electron energy levels
and the localization length. We apply various numerical approaches: the direct large-scale diagonalization
method, the solution of the time-dependent Schridinger equation, the transfer-matrix technique and the
finite-size scaling analysis. For few fermions it is found that short-range interactions leads to an
enhancement of the localization length, so that some many-body states can coherently propagate for a
distance larger than the non-interacting localization length. The level correlations of the two-electron
spectrum exhibit a continuous crossover from the intermediate statistics towards the Poisson distribution
in the limits of strong and weak interaction, while for the larger number of electrons a saturation to the
Wigner statistics is obtained.
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H. X 2Kopexewes

TOMEHOJIIIEM/II PETTEJIMETI'EH KATTBI AEHEJIEPJIET'T JIOKAJIM3ALIMA
KOHE 63APA OPEKETTEIT JIEKTPOHJAP/BIH KBAHTTBIK JU®DY3USICEI

Xa0bapraHbIH MOACTIH ITAHIATAHBIT KOTIOONIICKTI KO3y IAPABIH THIFBI3IBIK JKaFJaWaapbl €CENTEIIN NIbIFAPbII-
raH. bipOemikri perTeiMErcH skyhene esapa KHMBUIIAPAAFBI 3ACKTPOHAAP VINIH KYIITI JIOKATH3ALMHATIAHFAH
3NEKTPOHIAP APACHIHIAFHI KYJIOHIBIK UTEPIC NCIOKATH3AIMSFA OKCIIHET1.

H.X JKapexeuies

JIOKAJIM3ALIMA U KBAHTOBASI JUO®Y3US B3AUMOJIENUCTBYIOIINX DJIEKTPOHOB
B HU3KOPA3SMEPHEIX HEVIIOPAJOUYEHHBIX TBEP/IBIX TEJIAX

Hcnone3ys momenms Xa00apma, BBMHCICHA TJIOTHOCTh COCTOSHHH MHOTOYACTHYHBIX BO3OYKIcHWH. Jlna
B3aUMOJICHCTBYIOIINX 37ICKTPOHOB B OJHOMEPHOH HEYHOPSIOUCHHON CHCTEME KyJIOHOBCKOE OTTAIIKMBAHHEC MEKIY
CHIIBHO JIOKATM30BAHHBIMH 3ICKTPOHAMH MPHBOAHT K ICTOKATH3AINH.

Kirouernie ¢J10Ba: HEYOPAIOUCHHBIC CHCTEMBL, 3JICKTPOHHBIA TPAHCTIOPT, KBAHTOBAS JIOKATH3AIIH, JICKTPOH-
3JCKTPOHHOE B3aHMOACIHCTBHE.
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