Isa Kh. ZHAREKESHEV

(Al-Farabi Kazakh National University, Almaty. Republic of Kazakhstan. Email:
15a2020(@mail.ru)

ELECTRON DENSITY OF STATES AND LOCALIZATION
OF TWO-DIMENSIONAL DISORDERED SYSTEMS

IN QUANTIZED MAGNETIC FIELDS

Summary

We study numerically non-interacting electrons moving on a two-dimensional lattice with a
uniform magnetic field and a random site potential. The electron localization and the density of
states are investigated by using the method of transfer-matrices and by the direct diagonalization
technique. For numerical simulations the Ando model with the diagonal disorder is used. The
first preliminary data have been obtained for different sizes of the system and various values of
the magnetic field. The localization length exhibits Shubnikov-de-Haas oscillations. The density
of states shows several Landau bands separated by the energy gaps. With increasing the disorder
the Landau bands becomes broader and overlap with each other. The application of the obtained
results to the integer quantum Hall effect is discussed.
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Introduction. The prediction of the absence of the delocalized states for non-interacting
electrons in a disordered two-dimensional system in the limit of the vanishing magnetic field has
been made in a seminal paper of “gang of four” [1]. This has been a birth of the celebrating
scaling theory in condensed matter physics. Later on Klaus von Klitzing and coworkers have
discovered a quantum Hall effect [2]. The key point of this phenomenon is a quantization of the
Hall resistance occurring at very low temperatures close to the absolute zero and in an extremely
high magnetic field. For this discovery von Klitzing has been honored by the Nobel price for
physics in 1984.



This latter event has been followed by the discovery of the fractional quantum Hall effect
(FQHE), observed experimentally by Tsui, Stormer and Gossard [3]. The FQHE has also won
the Nobel Price in 1999 jointed by a theoretician Prof. Robert Laughlin who has elaborated an
analytical explanation for the fractional version of the effect. That is why the discovery made by
K. von Klitzing is referred to as the integer quantum Hall effect, i.e. IQHE (or ordinary QHE,
respectively). IQHE was found in two-dimen-sional (2D) electron or hole layers of the spatial
charge in the metal-insulator-semiconductor structures (MIS) and in the heterojunctions with
modulated doping.

The quintessence of the effect is that in the low temperature Hall conductivity oy of the 2D
degene-rated electron gas in a strong magnetic field B, which is measured as a function of
magnetic field intensity B or of the concentration of the two-dimensional carriers N,, one can
observe a number of plateaus. This is shown in Fig. 1 as an example of the dependence of the
Hall resistance Ry on the concentration N,. The relation Ry =1/0y is valid in the region of a
plateau. Exactly on the plateau we have

ogzvez/h. (1)

Here e and 4 are fundamental constants, i.e. the elementary charge and Planck’s constant,
respectively, v is filling factor which is equal to v = N/ N,, with N, being the number of the
electron states in the Landau level measured per square unit.

P kCIM &

Figure 1 — The quantum Hall effect in the GaAs heterostructure. The dependence of the tensor of
the Hall resistance:

the transversal p,y (on the top) and the longitudinal py (on the bottom) on the strength of the
external magnetic field B.

The temperature is equal to 7=8 mK [5]



NL = 1/ 271%2 = eB/ch = B/@(), (2)

where ¢ is the light speed and A=(ch/eB)”* is the magnetic length and @, = ch/e is the magnetic
flow quantum. Fo the first time the observation of the quantum Hall plateaus have been observed
and measured in the Si-MOS right-angle structure at the temperature T=1.5 K [1] as a function of
the gate voltage V. The latter is proportional to the filling factor N,.The similar “jumping”
picture has been obtained later on the heterostuctures GaAs/Aly3Gao;As as a direct field
dependence of the Hall resistance tensor pyy at the temperature 7=8 mK [4, 5].

Model of the numerical simulations. The study of electronic states in disordered systems is
inevi-table to understand electronic transport properties in conducting materials. Most directly
the electronic states are described by their wave functions. Since the wave functions and the
energies are both obtained by solving the eigenvalue problem for the disordered Hamiltonian, it
is quite natural to expect that the energy spectrum involves some information on the
eigenfunctions. In disordered systems the spatial sym-metries which exist in pure systems are
completely lifted. The fundamental symmetries under the operation of the time reversal can
persist. The importance of them in the problem of the Anderson localization were first pointed
out by Wegner [6,7] in the treatment of weakly localized regime. The link between the level
statistics and the fundamental symmetry was originally proposed in nuclear physics in order to
explain complicated energy spectra in some heavy nuclei [8-11], and then it has been applied to
the problems of metallic fine particles [12, 13] and quantum chaos [14,15].

Although substantial progress in the understanding of critical behaviour at the disorder-
induced IQHE-to-insulator transition has been achieved, nevertheless several issues are still
considered as being open and unsolved. The first issue of them is knowledge of the density of
states. The second one is the electron localization in the centre of the Landau bands. We use the
famous Ando model with the diagonal disorder [16]
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The onsite energies are measured in units of the hopping integral ¢+, while the length scale
is measured in the units of the lattice constant, i.e. a=1. The electron states denoted by |r>
correspond to the lattice sites of the simple square lattice. The random energies £, are governed
by the following distribution law

Ple)=
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The hopping elements between neighboring states r and r+A are considered and have the
following form [17, 18]:

exp(F2riaz), Aete, |,
Zr,r+A = { p { y} (5)

- L, Ae{ie +ez}

x>

where the magnetic field B enters the problem through the factor ,, — N, = B for simplicity we
h b

choose the standard gauge, namely A4 =(0,—B.,0).



The density of states. We study the single-electron density of states of two-dimensional
disordered systems in the presence of quantized magnetic field under various conditions.
According to the definition of the density of states

p(E) = %Z&E—en), ©)

Here p(E) is a global quantity, which is averaged of the whole surface of the two-dimensional
electron gas. The discrete energies have been calculated by the straightforward diagonalisation of
the Ando Hamiltonian (3). Figures 1 and 2 demonstrate the spectral density of states p(E) at
various disorder W of the random potential for the 2D system of linear size L=50 with fixed
magnetic filed 0=0.1 and 0=0.01, respectively. The plots exhibit periodic behaviour, which is
typical for the discrete lattice model. In both figures one observes the oscillating behaviour of the
density of states. Close to the band edge the Landau bands are well separated by the energy gaps.
With increasing the disorder W the Landau bands start to
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Figure 3 — Density of states p(E) of two-
dimensional electron gas
Figure 2 — Density of states p(E) of two-
dimensional electron gas in a quantized
magnetic field of the magnitude a=0.1 for
various disorder degree W:

in a quantized magnetic field of the magnitude
0=0.01 for various disorder degree W: 1 —-0.7; 2 —
1.0,3-1.5;4-2.0,5-5.0.

1-07:2-2.0:3-3.0:4-5.0. The size of the square sample is L x L =50 x 50.

The size of the square sample is L x L = 50 The results are obtained after ensemble averaging

x 50. over

200 realizations. The density of states of the tight-
binding model (W=0) is also shown by a non-
oscillating line. The inset shows

The results are obtained after ensemble
averaging over

200 realizations. The density of states of the
tight-binding model (W=0) is also shown by
a non-oscillating line

the enlarged area of the density of states marked
by the red circle



overlap with each other, their heights diminish. Finally, for larger W the gaps disappear entirely.
Although the shapes of the density of states in Figure 1 and in the inset of Figure 2 are similar to
each other, nevertheless p(E) can not be mapped by a scaling transformation f{a, ).

The localization length. The proposed numerical technique for calculation of the
localization of the electronic states is based on the evaluating the Green's functions gg(L) within
the single particle approximation. Here the electron transport occurs with energy E in a bar-
shaped disordered system of a length L and of a finite width M. Our system should be in a
thermodynamic equilibrium. For that it is connected to the two semi-infinite perfect leads
(thermal baths).

The localization length 4 can be obtained in the quasi-1D limit of a long 2D stripe with the
length L>>1, using the Oseledec's theorem. Then one has the following definition:

AW,E) 1> L

Thus, the inverse localization length is simply the exponential decay rate of the spatial
extension of gg(L). In practice, the study of the Green's functions is mapped into the equivalent
transfer-matrix calculations. The latter yields the smallest positive Lyapunov exponent identified
as A", Due to the convergence process of the underlying iteration procedure in the limit of large
L, the statistical quantity 4 becomes self-averaging [19]. We use the transfer-matrix method
developed in the paper [18], which has been successfully applied for three-dimensional
disordered systems subject under high magnetic fields. In contrast to the method of calculation of
the density of states performed in the previous section, which is based on the eigenvalue solvers,
here we apply the scattering approach for computing the transport of the electron waves through
the disordered region. While the quest for the eigenvalues requires the square geometry of the
system (i.e. finite in both directions), the transfer matrix method operates on a single spatial
scale, namely on the width L of the quasi-one-dimensional stripe, whose length tends to infinity.
This approach provides more convenient conditions for the thermodynamic limit, rather than
direct diagonalisation technique.

All the data for the reduced localization length 4 obtained by the transfer-matrix-method
have accuracy between 0.1% and 0.3% for the size L ranging from 20 up to 200. Further increase
of the system size above L = 400 requires an improvement of the statistical accuracy of the raw
data. In fact, the computing time increases as L/e?, where € = k d4,//; is the relative statistical
accuracy. The coefficient of proportionality k depends on the type of the boundary conditions
and on computing details (that are the efficiency of the computer and the optimization of the
algorithm).
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Figure 4 — Renormalized localization length A as a function of a magnetic field a at the disorder
degree W =2 for various energy E = 0; -0.2; 2.0. Data correspond to the energy £ = 0 for size L x
L =8 x 8 of a two-dimensional disordered system
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Figure 5 — Renormalized localization length A as a function of the electron energy £ in a fixed
magnetic field a=0.001

in the vicinity of the lowest Landau level at the disorder degree /¥ = 0.7 for various system size
L:

1-10,2-20,3-50,4-100,5-200

In this paper we have proposed the numerical method for the calculation of the density of
states and the localization length. The first raw results have been obtained for different sizes and
the magnetic field. Although the preliminary data are given without detailed analysis and
physical discussion, these will be provided elsewhere. Concerning the level statistics we show
that the compressability of the electron spectrum is connected to the multifractal properties of the
wave functions [20]. We shift these and other relations to the problem of the quantum Hall effect
for the nearest future.
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KBAHTTUIETIH MATHUT ©PICTEPEIT JIEKTPOH/IBIK KYJIEPTHIH
ThIFbI3AbIFbI

’KOHE EKIOJIIITEM/II PETTEJIMEI'EH )XY WEJIEPTHIH JTIOKAJTU3ALIUACHI

bi3 6ipTexTi MarHuT epici Oap jkoHe Ke3IeHCOK TYHIH/I MOTeHIHabl 0ap eKieamemIi Topaa
KOo3fanaTblH  Oip-OipiMEeH ocep eTNEWTIH AJIEKTPOHJApIAbl  3epTTelMi3.  ODIEKTPOHIBIK
JIOKAJM3aIMACHl JKOHE KYHIIEpiHIH TBIFBI3IBIFE Tpacep-MaTpuiia >KOHE JUaroHaIM3alus
omicimeH 3eprreneai. KoMmbproTepik MoenbAey YIIiH AUaroHaIIbIK peTTeIMereH AHI0 MOei
naiananeIbl. 3epTTEIIN OTBIPFaH JKYie MEH MarHUT Opici IMaMachIHBIH 9pPTYPIIi emeMaepi
YIUIH ajfaliKpl ajfblH aja MoJIMeTTep anbIHibl. Jlokaomsanus y3blHAbIFbl 1lyOHUKOB-1E-1"a3
OCHWIIS-IMSUTAPBIH - AUKBIHAAUTBIHABIFB  TaOBUIIBL. DJEKTPOHIBIK KYWIEPIIiH THIFBI3IBIFBI
SHEpreTUKANBIK caHbulayJapMeH OeniHreH JlannaynsiH OipHele 30HanapbiH kepcereai. Kocna
MOTEHLUAIbIH peTTeNIMeyl 6CKeH caiiblH JlaHnay 30HamapbIHBIH €Hl YJKele Tycell jKoHe oJiap
e3apa KaiTa jxabbuta Oactaiiibl. Ko KeTKi3UIreH KOPBITBIHABUIAPABIH XOJIIIBIH TOJBIKECENT]
KBaHTTHIK A (deKTiciHe mangananyra OOJaThIHIBIFBI TATKbUIAHFAH.

Kint ce3mep: »dIEKTPOHIBIK OTKI3TIMTIK, KPUTHKAIBIK KYOBUIBIC, €Ki eJmeMeri
ANEKTPOHJIBIK Ta3, XOJUIABIH KBAHTTHIK 3P PEKTICi, SMEKTPOHIBIK JTOKATA3AIHSICHI.
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IIJIOTHOCTD BJIEKTPOHHBIX COCTOSHUM U JIOKAJIU3ALIU S

ABYMEPHbLIX HEVIIOPAJIOYEHHBIX CUCTEM B KBAHTYIOUINX MAI'HUTHBIX
[TOJIAX

MpbI uccneayem HEB3aUMOJICUCTBYIOIINE SJIEKTPOHBI, ABUKYIIUECS B IBYMEPHOUN pPELIETKE C
OJHOPOJAHBIM MArHUTHBIM TMIOJIEM M CIy4YalHBIM Yy3€JIbHBIM NOTEHUMAIOM. M3ydaroTcs
AJIEKTPOHHAS JIOKAJIM3alUsl W IUIOTHOCTh COCTOSIHUM METOAOM Tpacdep-MaTpull U METOI0M
NpsAMOM HaroHanu3auuuu. JJie KOMIIBIOTEPHOTO MOJIEIMPOBAHMS HUCIIOJIb30Balach MOJIEb
AHJ0 ¢ nuaroHadbHBIM OecriopsakoMm. llepBble mNpeaBapUTENbHBIE aHHBIE MOJYYEHBI JUIS
pa3HBIX pa3MEpOB MCCIETYEMOM CUCTEMBI M BEJIMYMH MArHUTHOrO moJia. HalneHo, 4rto njmvHa
Jokanuzauuu  mposiB-nger ociwuuisiiuu - LlyOHukoBa-ne-I'aza.  [I70THOCTH  3IIEKTPOHHBIX
COCTOSIHMM TOKa3bIBaeT HECKOJIbKO 30H JlaHnay, pasfelieHHbIX dHEpreTMdecKuMu ImensMu. C
yBeJInYeHHeM Oecropsika MPUMECHOTO OTEHIaNa mupruHa 30H JIaHaay cTaHOBUTCS OOJbIIE U
OHM HAYMHAIOT TMEpPEeKphIBaTbCI MEXKIy cobOoi. OOcyxaaeTcss MPUMEHUMOCTb IMOTYYEHHBIX
PE3yIbTATOB K IIEIOUHCICHHOMY KBaHTOBOMY 3 dexTy Xoina.

KiroueBble ciioBa: 3J€KTpOHHas MPOBOAUMOCTb, KPUTHUECKHUE SIBJICHMS, JBYMEPHBII
AJIEKTPOHHBIN T'a3, KBaH-TOBBIN 3 ekt Xoa, 3eKTpOHHAs JTOKaIU3aIusl.
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