DEVELOPMENT OF AN EXPERIMENTAL PLANT OF A NON-NOZZLE POROUS FOAM GENERATOR FOR PRODUCING WITH FOAM GENERATING AND DEFOAMING STRUCTURES

Abstract. On the basis of studies of heat-mass exchange processes by boiling of pure liquids and with the addition of surface-active agents, a new class of non-nozzle porous foam generator for producing of air (steam) and mechanical foam was developed. The results of the experiment are generalized by the criteria equations of heat-mass exchange with an accuracy of ± 20% with respect to the processes of bubbling, foam generation, pseudo-fluidization and boiling. The combined action of capillary and mass forces for capillary-porous structures of the 5×0,4 type made it possible to boost the operating mode of the foam generator by 1,5-2 times and reduce the consumption of the foam generating agent and reduce the hydraulic resistance tenfold. The nozzle-free foam generators of air mechanical foam were designed along with its case, inlet and outlet nozzles, a set of grids and sprayer. They help to conduct foam generation processes with high effectiveness under low hydro- and gas dynamic resistance. For further enhancement of the combined processes of gas mechanical foam and collecting micro-and-ultramicroscopic dust, a dust collector along with its case, inlet and outlet nozzles, a set of grids and sprayer was proposed, which is equipped with defoaming grid porous structure, whereas foam generating and defoaming structures are installed into in case consequently as per the dusty gas movement and sludge collector. Besides, each subsequent grid of foam generating porous structure is made with the increased size of cells following the cleanable gas; e.g. made of metal cells for clearance 0,08*0,14*1, and defoaming made of grids with decreasing size of cells following the cleanable gas, e.g made of metal cells for clearance 0,4*0,14*0,08.

Key words: porous foam generator, foam generation, foaming, defoaming, heat-mass exchange, capillary-porous structures.

УДК 614.843 (088.8)

А. А. Генбач1, К. К. Шоколаков2

1Алматинский университет энергетики и связи, Алматы, Казахстан,
2АО «Казахский институт нефти и газа», Алматы, Казахстан

РАЗРАБОТКА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ БЕЗФОРСУНОЧНОГО ПОРИСТОГО ПЕНОГЕНЕРАТОРА ВОЗДУШНО(ПАРО)-МЕХАНИЧЕСКОЙ ПЕНЫ С ПЕНОГЕНЕРИРУЮЩИМИ И ПЕНОГАСЯЩИМИ СТРУКТУРАМИ

Аннотация. На основе исследований процессов тепло-массообмена кипением чистых, жидкостей и с добавкой поверхностно-активных веществ разработан новый класс безфорсуночных капиллярно-пористых пеногенераторов воздушно(паро)-механической пены. Результаты эксперимента обобщаются критерийными уравнениями тепло- и массообмена с точностью ±20% применительно к процессам барботажа, пеногенерации, пневдоожижения и кипения. Совместное действие капиллярных и массовых сил для капиллярно-
пористых структур вида 3x0.4 позволило форсировать в 1,5-2 раза режим работы пеногенератора, сократить расход пеногенератора в 1,5-2 раза уменьшить гидравлическое сопротивление. Разработаны безфорсуночные пеногенераторы воздушно-механической пены, содержащий корпус, входной и выходной патрубки, пакет сеток, распылитель. Они позволяют проводить процессы генерации пены с высокой эффективностью при малых гидро- и газодинамических сопротивлениях. Для дальнейшей интенсификации совместных процессов генерации газомеханической пены и увлажнения микро- и ультрамикроскопической пены предложен пылеуловитель, содержащий корпус, выходной и выходной патрубки, пакет сеток, распылитель, который снабжен пеногасящей сетчатой пористой структурой, причем пеногенерирующая и пеногасящая структуры установлены в корпусе последовательно по ходу движения запыленного газа, и шламосборником. Кроме того, каждая последующая сетка пеногенерирующей сетчатой пористой структуры выполнена с увеличивающимися размером ячеек по ходу движения очищаемого газа, например, из металлических с размером ячеек на просвет: 0,08*0,14*1, а пеногасящая — из сеток с уменьшающимися размером ячеек по ходу движения очищаемого газа, например, из металлических с размером ячеек на просвет: 0,4*0,14*0,08.

Ключевые слова: пористый пеногенератор, пеногенерация, пенообразование, пеногашение, теплоассоциионные, пористые структуры.

Исследование процессов теплоассоциионных на кипении чистых жидкостей в капиллярно-пористых структурах, разработка способов управления этим процессом [1] позволило обобщить эксперименты с чистыми пепеньями и запыленными пепеньими потоками и изучить единное уравнение для расчета теплоассоциионной массообмена с точностью ±20 % [2], причем обобщались процессы кипения, барботажа, пеноформирования и пеногенерации.

На основе таких исследований разработан новый класс безфорсуночных пеногенераторов и пенообразующих устройств с барботажным капиллярно-пористым резервуаром [3], так и с пеногенерирующими и пеногасящими структурами, ориентированными вертикально. За счет улучшения внутренними характеристиками двухфазных потоков [4] синтезированы различные устройства пено-пылеуловителя [5-13]. Стоит также отметить возможность повышения эффективности пылеулавливания за счет использования микрокапельных пористого материала [6], разделение потока на энергию волны и энергию газа (парам) [7, 11], создание генераторов пены путем подвода электрогидравлического (без набегающего потока) [8], разработки турбулизаторов в виде пеногенерирующих и пеногасящих пористых структур, использующих совместное действие гравитационных и капиллярных сил, сил давления и вибрации.

В. а. с. №358012, 1972 описан способ электрохимической очистки газов, где электризацию осадительных элементов производят, используя трибоэлектрический эффект. Данный эффект использовали и ранее, однако при электризации фильтрующих элементов на них образовывался проводящий слой, который снижал электрохимическую составляющую фильтрации. В рассмотренном способе будет повышена эффективность электрохимических фильтров, поскольку электризацию предполагается осуществить в местах покрытия взвешенного, токонепроницаемого электризующего агента в полях осадительных элементах.

Способ электрохимической очистки газов /а.с. 358012, 1972/ по эффективности пылеосаждения превосходит известные способы, однако в отличие от них он имеет низкую производительность пылеосаждения.

Таким образом, используя трибоэлектрический эффект можно увеличить эффективность электризации пыли в воздушном потоке, однако необходимо решать задачу по уменьшению производительности пылеосаждения.

Дополнением к способам очистки газов от пыли является способ /а.с. 247241, 1969/, в котором предлагается увлажнять тонкие аэрозоли путем зарядки частиц аэрозоля при осаждении на них электростатически распыляемой легко испаряющейся жидкости, причем пар жидкости конденсируют для повторного использования. Такой способ имеет преимущество над способом пылеулавливания заряженной частиц электростатически распыленной водой, так как при взаимном притяжении частиц пыли и капель распыленной воды, происходит их слипание, укрупнение частиц с нейтрализацией зарядов.

Одним недостатком электрических способов является незначительный размер и рыхлая структура образующихся конгломератов пылевых частиц. При созревании они могут легко разрушаться. Особенно низкую эффективность процесса пылеосаждения следует ожидать при...
осаждении мелкодисперсной пыли. Следовательно, необходимо разработать способ осаждения пыли, который бы позволял существенно повысить прочность и устойчивость разрушению образующихся пылевых конглomerатов при обработке воздушного запыленного потока электрическим полем при сохранении высокой производительности пылеочистки.

Интересен способ обезвреживания воздуха с применением пористых полотен /а.с. №368413, 1973/. Для повышения эффективности улавливания пыли запыленной поток пропускают между параллельно расположенными полотнами, которые смахивают жидкость. Движущийся поток воздуха приводит полотна в колебательные движения из-за неоднородности профиля скоростей. Частички пыли, находясь в турбулентном потоке воздуха, увлажняются, подвергаются столкновениям и коагулируются. Увлажнение ткани осуществляется путем подачи воды к трубчатой раме, на которой закреплены полотна.

Для достижения необходимой эффективности пылеулавливания потребуется проведение многочисленных экспериментальных исследований при различных режимных параметрах, а также новые конструктивные разработки для формирования аэродинамической структуры запыленного воздушного потока.

Известен способ пылеподавления, основанный на использовании насыщенного водяного пара. При конденсации пара возникает область пониженного давления, в которую устремляются пылинки, и могут быть уловлены. К недостаткам данного способа можно отнести его низкую эффективность, обусловленную нерациональным использованием генерируемого пара в целях пылеподавления. К тому же, для достижения требуемых норм запыленности, необходимы большие расходы пара, а, следовательно, неоправданные затраты на выработку пара.

Ближе к описанному способу можно считать способ (а.с. №130461), где производится смешение пылевоздушного потока со струей пара с последующим осаждением паровыльного потока распыленной водой.

При такой организации процесса также следует ожидать низкую степень пылеулавливания. Конденсационный эффект будет проявляться нестабильно, носить вероятностный характер, зависящий от случайных столкновений распыленных капелек воды с молекулами водяного пара и будет определяться степенью турбулентности пылевоздушного потока. При насыщении пылевоздушного потока паром эффективность коагуляции пыли следует ожидать незначительной. Поэтому водяной пар и распыленная вода используются нерационально, имеются повышенные расходы пара и воды.

При изучении движения аэрозольных частиц в поле диффузии пара показано, что аэрозольные частицы особенно интенсивно удаляются вблизи холодной поверхности. Аэрозоли ос скорость 1 м/с пропускали через конденсатор длиной 0,5 м и шириной 5x10⁻³ м. Металлическая стенка омывалась водой с температурой на входе в конденсатор 20°C и на выходе из него около минус 70°C. Концентрация частиц составляла 1012 частиц/м³. Степень улавливания колебалась в больших пределах (75-95%). Механизм процессов пылеулавливания объяснен двумя положениями: 1) конденсационным укрупнением аэрозольных частиц как на ядрах конденсации; 2) направленным движением молекул пара преимущественно к холодной поверхности.

Механизм процесса осаждения пыли очень сложный, хотя можно указать основные действующие факторы: движущей силой аэрозольных частиц является стефановский поток конденсирующегося пара, к тому же она усиливается наличием диффузионных, термофоретических сил и конвективных потоков, крупные частицы удаляются из потока за счет гравитационных и центробежных сил, некоторое число частиц в паровоздушном потоке уменьшается за счет процесса коагуляции.

Исследование механизма процесса пылеулавливания в поле диффузии пара требует дальнейшего развития, особенно это относится к интенсификации процессов конденсации пара, равномерности распределения жидкостной пленки, разработке новых устройств питания пылевидного воздушного потока насыщенным паром.

Некоторая интенсификация процессов пылеулавливания может быть достигнута за счет наложения дополнительных источников энергии /а.с. №1032197, 1983/. Предлагается водяной пар и диспергированную воду заряжать разноименно, причем воду необходимо предварительно омагнитить. В бункер с горячей массой по хodu ее движении подается пар, который проходит через элек-
трическое поле, сформированное на выходе из парового сопла. Паропылевоздушный поток, покидая бункер, конденсируется на распыленных форсункой каплях электрически заряженной, предварительно омагниченной воды.

При весовом расходе пара, равном 7×10^3 кг/с и более, относительная заполненность воздуха достигает 3-6% и становится автомодельной относительно расхода пара. Увеличение эффективности процесса в описанной конденсационной системе пылеподавления происходит в 1,5-2 раза (видимо, по отношению к конденсационной системе без электрической зарядки пара, воды и омагничивания воды). Также неясно, как влияет процесс омагничивания воды, и какой вклад электрической зарядки отдельно для пара и воды.

Полученный эффект объясняется тем, что при подаче в очаг пыли разноименно электрозаряженных аэрозолей пара и воды из-за электрических сил притяжения между молекулами пара и каплями воды происходит более интенсивная и упорядоченная конденсация пара на каплях воды. У поверхности конденсации возникает большее, чем при недарженных аэрозолях, гидродинамическое течение заполненной среды, направленное к каплям, которое притягивает пылинки и способствует их захвату каплями, за счет чего происходит коллективное осаждение пылинок. Коэффициент захвата частиц пыли каплями воды также возрастает за счет уменьшения сил поверхностного натяжения электрозаряженных капель.

Описанный способ пылеподавления имеет дополнительный эффект по осаждению пылевых частиц, однако достигается это большой ценой: необходима электрическая зарядка пара, воды, омагничивание воды, что серьезно усложняет схему конденсаторной системы пылеподавления, требует дополнительных затрат на создание электрических полей и на обеспечение условий электробезопасности работающих.

Таким образом, дальнейшие теоретические и экспериментальные исследования процессов пылеулавливания должны быть направлены на создание новых конструктивных решений, в основе которых могут быть положены рассмотренные способы с применением испарительно-конденсационных многофазных систем пылеулавливания и поверхностно-активных веществ.

Главным образом, при существующих типах пенообразующих веществ, возлагаются надежды на новые аэрогазодинамические схемы и конструкции, которые будут определять протекание процесса пылеосаждения, существенно увеличивая степень очистки запыленного потока, явятся надежными, простыми в изготовлении и эксплуатации, удовлетворяющими требованиям техники безопасности при эксплуатации оборудования [8-13].

На рисунке 1 представленный новый класс безфорсуночного пенообразителя с пенообразующей капиллярно-пористой структурой 2. Экспериментальная установка по исследованию процессов генерации воздуха (паро)-механической пены показана на рисунке 2.

Рисунок 1 – Безфорсуночный капиллярно-пористый пенообразитель воздушно-(паро)-механической пены:
1 – цилиндрический корпус, 2 – капиллярно-пористая структура, 3 – распылитель (питающая артерия),
4 – пенообразующий раствор, 5 – воздушно (паро) – механическая пена, m_a, m_p, m_n – расходы воздуха (пара), жидкости (пенообразующего раствора), пены; q – плотность энергии набегающего (пенообразующего) потока

303
Рисунок 2 – Экспериментальная установка по исследованию процессов генерации пены:
1 – пеногенератор; 2 – распылитель; 3 – соединение капиллярно-пористой структуры; 4 – динамика пузырь в структуре

Комбинированное использование массовых и капиллярных сил обеспечивает создание равномерного и устойчивого распределения пленки пенообразующего раствора по всей капиллярно-пористой структуре вида 3х0,4 (три слоя сетки с шириной ячейки в свете 0,4х10⁻² м). Это позволяет форсировать в 1,5-2 раза режим работы пеногенератора, сократить расход пенообразователя при сохранении стойкости, дисперсности и высокократности пены.

Величина гидравлического сопротивления будет в десятки раз меньше (нет форсунки), чем в пеногенераторах ГВПВ-400 или ПГТ-4.

Исследование процессов тепломассообмена кипением чистых жидкостей в капиллярно-пористых структурах выявило поведение внутренних (термогидравлических) характеристик (зарождение паровой фазы, плотность центров генерации, выброс капель из структуры, отрывной диаметр и частота отрыва пузырей, скорость роста пузырей [11, 13-16]. Были разработаны различные пористые системы применительно к тепловым энергетическим установкам [17] и с целью их расчета обработаны экспериментальные данные с точностью ±20% в виде критериального уравнения для барботажа, вдува, отсоса, псевдоожижения, пеногенерации [18] и сконструированы высокоэффективные безфорсуночные капиллярно-пористые пылесуловители с пеногенерирующими и пеногасящими структурами [3, 6-8, 12].

Рассмотрим характерный аппарат из нового класса безфорсуночных пылесуловителей. Изобретение авторов «Пылеуловитель» [а.с. №1456608, МКИ E21F 5/04, 1989] относится к различным областям народного хозяйства для высокоэффективной очистки газа (воздуха) от микро-
ультрамикроскопической пыли (фракций размером менее 5×10^{-6} м и $0,25 \times 10^{-6}$ м соответственно), например, при сжигании топлива, переработке и транспортировке пылящих материалов, при удалении вентиляционных выбросов.

Известен пенный аппарат для улавливания газов и аэрозолей [а.с. №309717, кл.В. Old 47/04, 1971], содержащий патрубки ввода и удаления газа, корпус, волокнистую насадку, расположенную в корпусе, прокладку-перегородку, каплеотбойник.

Недостатком устройства является низкая эффективность улавливания микро- и ультрамикроскопической пыли, определяемая размерами пор насадки, что в свою очередь создает высокую материальность, большие гидравлические сопротивления прокачки газа (воздуха).

Небольшая продолжительность работы между регенерациями за счет забивания пор волокнистой насадки является серьезной проблемой. Пена образуется вне пористого тела и набирается на его поверхности. Это снижает эффективность улавливания пыли и интенсивность процесса массопереноса, что приводит к росту материальности, габаритов и массы аппарата.

Поток газа, проходя через волокнистую насадку, преодолевает большое гидродинамическое сопротивление. Это связано с перерасходом энергии на его прокачку. Продолжительность работы между регенерациями такого аппарата будет невысокой, поскольку поры в волокнах начнут забиваться пылинками. Все это усложняет эксплуатацию аппарата и уменьшает его надежность.

В предлагаемых капиллярно-пористых структурах бездиффузионого пылесохозяйственника [3, 6-8, 12] высокую эффективность улавливания микро- и ультрамикроскопической пыли можно объяснить диффузионным механизмом осаждения пыли в пенистом потоке в объеме и на поверхности структуры, когда пылинки испытывают непрерывное воздействие молекул газа, находящегося в бруновском движении, причем подвижность частиц будет увеличена путем диффузора, возникающего за счет разности температур между скелетом пористой структуры, пенного потока и частицами пыли, и за счет диффузионного, вызванного градиентом концентрации компонентов пенного потока, усилением процессами испарения пенообразующего раствора в объеме пористой структуры и частичной конденсаций пара пенного потока.

Высокая устойчивость и стабильность пленки жидкости в ячейках сетчатых структур обеспечивается равномерным подводом жидкости распылителя и позволяет в 1,5-2 раза уменьшить расход пенообразующего раствора при сохранении стойкости, дисперсности и высокократности пены, получаемой в пенообразующей структуре [3, 6-8, 12].

Как показывают опыты [7, 12] гидравлическое сопротивление сетчатых пористых структур по сравнению с волокнистой насадкой уменьшается в десятки раз, а гидродинамическое - в несколько раз. За счет того, что предлагаемые пористые структуры имеют большие размеры ячек по сравнению с порами волокнистой насадки, существенно увеличивается период между регенерациями сеток, а значит, упрощается эксплуатация и повышается надежность работы пылеуловителя и срок службы.

Организовать устойчивый процесс в многокапельном слое с помощью волокнистых и им подобных фильтрующих материалов (металлокерамические, спеченные порошки) не удается, так как пузыри пены закупоривают поры насадки, прекращая поступление свежих порций пенообразующей жидкости к пузьреконденсирующим пазам при нагрузках в (2...2,5) раз меньше, чем для сетчатых структур.

Работает пылеуловитель следующим образом.

Загрязненный пыльный поток вводится через патрубок подвода запыленного газа 1 в корпус пылеуловителя 2 (рисунок 3). Очистку газа от микроскопической пыли производится в пенообразующей пористой структуре 3 вида. 0,08*0,14*1. Газохимическая пена 10 выделяется газовым потоком из ячейк структуры, снабжающей пенообразующим раствором 9, например, ПО-12, подаваемым из распылителя 4.

Пористая структура по сравнению с изотропной структурой позволяет существенно интенсифицировать массообменные процессы, протекающие в ее объеме и на поверхности за счет облегченного роста пузырей 8 от вершины конуса к его основанию, что повышает коагулирующую способность пены. Следовательно, интенсификация процессов приводит к росту эффективности улавливания микроскопической пыли за счет повышения коэффициента захвата пыли пеною в объеме структуры и на ее поверхности.
Газомеханическая пена 10 будет разрушаться от поверхности и в объеме пеногасящей пористой структуры 5 вида 0,4*0,14*0,08. Пузыри пены 11 начнут интенсивно сгорать в структуре за счет роста сопротивления от основания конуса структуры к его вершине. Микроскопическая пыль, содержащаяся в разрушаемой газомеханической пене, под действием гравитационных сил и сил давления, стекающего из распылителя по поверхности пористой структуры устремляется в шламосборник 7.

Газ будет дополнительно очищаться от микроскопической пыли в пеногасящей структуре, где существенно интенсифицируется процесс разрушения газомеханической пены за счет того, что сетки набраны с уменьшающимся размером ячек.

Это способствует повышению эффективности улавливания микроскопической пыли на ее поверхности и в объеме, за счет чего увеличивается коэффициент захвата пыли и коагулирующая способность разрушающего пенного потока.

Газ, очищенный от микроскопической пыли, удаляется из аппарата через патрубок отвода очищенного газа 6.

Опыты показали [8, 12], что по сравнению с фильтрующими материалами, такими как металл-порошка и песчаные порошки, расход пенообразующего раствора сокращается в (1,5…2) раза при сохранении стойкости, дисперсности и высокократности пены, гидравлическое сопротивление по транспорту пенообразующей жидкости уменьшается в (10…20) раз, газодинамическое сопротивление – в 1,8 раза, что уменьшает мощность насоса и вентилятора (дымососа), материалосъём и габариты – в (2…2,5) раза, массу установки – в (3…4) раза.

Существенно повышается период между регенерациями и эффективность улавливания микроскопической пыли, которая может достигать значений (99,6…99,8) %, упрощается условия
эксплуатации, возрастает надежность пылеуловителя и срок его службы, что подтверждается актами треста «Алма-Атинскстрой» и Алма-Атинской ЭЭЦ-2.

Экономический эффект от внедрения предложенного пылеуловителя будет иметь место за счет сокращения расхода пенообразующего раствора в 1,5-2 раза, уменьшения гидравлического сопротивления по транспорту пенообразователя в (10÷20) раз, газодинамического сопротивления по прокачке запыленного потока – в 1,8 раза, материалоемкости и габаритов – в 2÷2,5 раза, массы установки в 3÷4 раза. Также упростятся условия эксплуатации аппарата, повысится период работы между регенерациями, а значит, возрастет его надежность и срок службы, что снизит капитальные и эксплуатационные затраты.

ЛИТЕРАТУРА

А. А. Генбач, К. К. Шоколаков

Алматы энергетика және байланыс университеті, Алматы, Қазақстан

ҚОБИҚ ӨНІРДЕТІН ЖӘНЕ ҚОБИҚ СОНДІРЕТІН ҚУРЫЛЫМДАРЫ БАР АУА (БУ)-МЕХАНИКАЛЫҚ ҚОБИҚТІҢ БҮРІККІШІСІЗ КЕУЕК ҚОБІҚ ГЕНЕРАТОРЫНЫҢ ЭКСПЕРИМЕНТТЕК КОНДЫРЫГЫСЫН ЭЗІРЛЕУ

Аннотация. Таза суықтықтарды қайнатауы және қабатты-безлесінді зияттарды косумен жылу-салақ алынар аударылы құрлықтар үдерісті зерттеу негізінде ауа(бу)-механикалық қоңір құрлықтарының жаңа қласы әзірленді. Эксперимент теңізлерінің қызмет құрылысымен қатар құрлықтардың құрлықтардың жаңа қласы әзірленді. Эксперимент қатар немесе көптеген жұмысалғандығы 1%-ден 20%-ға дейінгі қарқындық құрлықтар қалыптастырылған. Капиллярлық-көңірлік құрлықтар үшін 3х0,4 м түрінде құрлықтар қызмет құрлықтар есебінен. Қоңір құрлықтарының бірінші сегментіне кіреді қоңір құрлықтарының құрлықтар және құрлық құрлықтар құрлықтар жаңа қласы әзірленді. Эксперимент теңізлерінің қызмет құрылысымен қатар құрлықтардың құрлықтардың жаңа қласы әзірленді. Эксперимент қатар немесе көптеген жұмысалғандығы 1%-ден 20%-ға дейінгі қарқындық құрлықтар қалыптастырылған. Капиллярлық-көңірлік құрлықтар үшін 3х0,4 м түрінде құрлықтар қызмет құрлықтар есебінен. Қоңір құрлықтарының бірінші сегментіне кіреді қоңір құрлықтарының құрлықтар және құрлық құрлықтар құрлықтар есебінен.

Түкін сөздер: борындық көңір құрлықтар, көңір құрлықтар, жылу-салақ алынар аударылы.